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Abstract

In previous articles, an identity relating the canonical metric to the hyperbolic metric associ-
ated to any compact Riemann surface of genus at least two has been derived and studied. In
this article this identity is extended to any hyperbolic Riemann surface of finite volume. The
method of proof is to study the identity given in the compact case through degeneration and
to understand the limiting behavior of all quantities involved. In the second part of the paper,
the Rankin-Selberg transform of the non-compact identity is studied, meaning that both sides
of the relation after multiplication by a non-holomorphic, parabolic Eisenstein series are being
integrated over the Riemann surface in question. The resulting formula yields an asymptotic
relation involving the Rankin-Selberg L-functions of weight two holomorphic cusp forms, of
weight zero Maass forms, and of non-holomorphic weight zero parabolic Eisenstein series.
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1 Introduction

1.1. Beginning with the article [13], we derived and studied a basic identity, stated in (1) below,
coming from the spectral theory of the Laplacian associated to any compact hyperbolic Riemann
surface. In the subsequent papers, this identity was employed to address a number of prob-
lems, including the following: Establishing precise relations between analytic invariants arising
in the Arakelov theory of algebraic curves and hyperbolic geometry (see [13]), proving the non-
completeness of a newly-defined metric on the moduli space of algebraic curves of a fixed genus
(see [14]), deriving bounds for canonical and hyperbolic Green’s functions (see [15]), and obtaining
bounds for Faltings’s delta function with applications associated to Arakelov theory (see [16]). In
the present article, we expand our application of the results from [13] to analytic number theory.
In brief, we first generalize the identity (1) to general non-compact, finite volume hyperbolic Rie-
mann surfaces without elliptic fixed points; this relation is stated in equation (2) below. We then
compute the Rankin-Selberg convolution with respect to (2), and show that the result yields a
new relation involving Rankin-Selberg L-functions of cusp forms of weight two and Maass forms,
as well as the scattering matrix of the non-holomorphic Eisenstein series of weight zero.

1.2. The basic identity. Let X denote a compact hyperbolic Riemann surface, necessarily of
genus g ≥ 2. Let {fj} be a basis of the g-dimensional space of cusp forms of weight two, which
we assume to be orthonormal with respect to the Petersson inner product. Then, we set

µcan(z) =
1

g
· i

2

g∑
j=1

|fj(z)|2dz ∧ dz
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for any point z ∈ X. Let ∆hyp denote the hyperbolic Laplacian acting on the space of smooth
functions on X, and K(t; z, w) the corresponding heat kernel; set K(t; z) = K(t; z, z). We use
µshyp to denote the (1, 1)-form of the constant negative curvature metric on X such that X has
volume one, and µhyp to denote the (1, 1)-form of the metric on X with constant negative curvature
equal to −1. With this notation, the key identity of [13] states

µcan(z) = µshyp(z) +
1

2g

∞∫
0

∆hypK(t; z)dtµhyp(z) (z ∈ X). (1)

The first result in the present paper is to generalize (1) to general non-compact, finite volume
hyperbolic Riemann surfaces without elliptic fixed points. Specifically, if X is such a non-compact,
finite volume hyperbolic Riemann surface of genus g with p cusps and no elliptic fixed points, then

µcan(z) =

(
1 +

p

2g

)
µshyp(z) +

1

2g

∞∫
0

∆hypK(t; z)dt µhyp(z) (z ∈ X). (2)

The proof of (2) we present here is to study (1) for a degenerating family of hyperbolic Riemann
surfaces and to use known results for the asymptotic behavior of the canonical metric form µcan

(see [12]), the hyperbolic heat kernel (see [18]), and small eigenvalues and eigenfunctions of the
Laplacian (see [21]).

In [2], the author extends the identity (2) to general finite volume quotients of the hyperbolic upper
half-plane, allowing for the presence of elliptic elements. The proof does not employ degeneration
techniques, as in the present paper, but rather follows the original method of proof given in [13]
and [15]. The article [2] is part of the Ph.D. dissertation completed under the direction of the
second named author of the present article.

1.3. The Rankin-Selberg convolution. For the remainder of the present article, we assume
p > 0. Let P denote a cusp of X and EP,s(z) the associated non-holomorphic Eisenstein series
of weight zero. In essence, the purpose of the present article is to evaluate the Rankin-Selberg
convolution with respect to (2), by which we mean to multiply both sides of (2) by EP,s(z) and
to integrate over all z ∈ X.

By means of the uniformization theorem, there is a Fuchsian group of the first kind Γ ⊆ PSL2(R)
such that X is isometric to Γ\H. Furthermore, we can choose Γ so that the point i∞ in the
boundary of H projects to the cusp P , which we assume to have width b. Writing z = x + iy,
well-known elementary considerations then show that the expression∫

X

EP,s(z)µcan(z) =

∫
X

EP,s(z)

(1 +
p

2g

)
µshyp(z) +

1

2g

∞∫
0

∆hypK(t; z)dt µhyp(z)


is equivalent to

∞∫
y=0

b∫
x=0

ysµcan(z) =

∞∫
y=0

b∫
x=0

ys

(1 +
p

2g

)
µshyp(z) +

1

2g

∞∫
0

∆hypK(t; z)dt µhyp(z)

 . (3)

The majority of the computations carried out in the present article are related to the evaluation
of (3). To be precise, for technical reasons we consider the integrals in (3) multiplied by the factor
2gb−1π−sΓ(s)ζ(2s), where Γ(s) is the Γ-function and ζ(s) is the Riemann ζ-function.

1.4. The main result. Having posed the problem under consideration, we can now state the
main result of this article after establishing some additional notation.

The cusp forms fj , being invariant under the map z 7→ z + b, allow a Fourier expansion of the
form

fj(z) =

∞∑
n=1

aj,ne
2πinz/b.



3

Following notations and conventions in [4], we let

L̃(s, fj ⊗ f j) = G∞(s) · L(s, fj ⊗ f j), (4)

where

G∞(s) = (2π)−2s−1Γ(s)Γ(s+ 1)ζ(2s),

L(s, fj ⊗ f j) =

∞∑
n=1

|aj,n|2

(n/b)s+1
.

As shown in [4], the Rankin-Selberg L-function L̃(s, fj ⊗ f j) is holomorphic for s ∈ C with
Re(s) > 1, admits a meromorphic continuation to all s ∈ C, and is symmetric under s 7→ 1− s.
Let ϕj be a non-holomorphic weight zero form which is an eigenfunction of ∆hyp with eigenvalue
λj = sj(1− sj), hence sj = 1/2 + irj . From [11], we recall the expansion

ϕj(z) = αj,0(y) +
∑
n 6=0

αj,nWsj (nz/b),

where

αj,0(y) = αj,0y
1−sj ,

Wsj (w) = 2
√

cosh(πrj)
√
|Im(w)|Kirj (2π|Im(w)|)e2πiRe(w) (w ∈ C),

and K·(·) denotes the classical K-Bessel function. Again, following notations and conventions in
[4], we let

L̃(s, ϕj ⊗ ϕj) = Grj (s) · L(s, ϕj ⊗ ϕj),

where

Grj (s) = s(1− s)π−2sΓ2
(s

2

)
Γ
(s

2
+ irj

)
Γ
(s

2
− irj

)
ζ(2s),

L(s, ϕj ⊗ ϕj) =
∑
n 6=0

|αj,n|2

(n/b)s−1
.

As shown in [4], the Rankin-Selberg L-function L̃(s, ϕj ⊗ ϕj) is holomorphic for s ∈ C with
Re(s) > 1, admits a meromorphic continuation to all s ∈ C, and is symmetric under s 7→ 1 − s.
Observe that our completed L-function L̃(s, ϕj ⊗ ϕj) differs from the L-function defined in [4]
because of the appearance of the multiplicative factor s(1− s) in the definition of Grj (s).

Similarly, one can define completed Rankin-Selberg L-functions associated to the non-holomorphic
Eisenstein series EP,s(z) for any cusp P on X having a Fourier expansion of the form

EP,s(z) = δP,∞y
s + φP,∞(s)y1−s +

∑
n 6=0

αP,s,nWs(nz/b)

with φP,∞(s) denoting the (P,∞)-th entry of the scattering matrix.

With all this, the main result of the present article is the following theorem. For any ε > 0 and
s ∈ C with Re(s) > 1, define the Θ-function

Θε(s) =

∞∑
λj>0

cosh(πrj)e
−λjε

2λj
L̃(s, ϕj ⊗ ϕj)

+
1

8π

∑
P cusp

∞∫
−∞

cosh(πr)e−(r2+1/4)ε

r2 + 1/4
L̃(s, EP,1/2+ir ⊗ EP,1/2+ir)dr
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and the universal function

Fε(s) =
ζ(s)bs−1

2π2

∞∫
0

r sinh(πr)e−(r2+1/4)ε

r2 + 1/4
Gr(s)dr.

Then, the L-function relation involving Rankin-Selberg L-functions of cusp forms and Maass forms

lim
ε→0

(
Θε(s)− Fε(s)

)
=

g∑
j=1

L̃(s, fj ⊗ f j)− 4πζ(s)bs−1G∞(s)− π−s 2s

s+ 1
Γ(s)ζ(2s)φ∞,∞

(
s+ 1

2

)
(5)

holds true. By taking ε > 0 in (5), one has an error term which is o(1) as ε approaches zero. This
error term is explicit and given in terms of integrals involving the hyperbolic heat kernel.

A natural question to ask is to what extent the relation of L-functions (5) implies relations be-
tween the Fourier coefficients of the holomorphic weight two forms and the Fourier coefficients
of the Maass forms under consideration. In general, extracting such information from a limiting
relationship such as (5) could be very difficult. However, as stated, our analysis yields an explicit
expression for the error term by rewriting (5) for a fixed ε > 0, which allows for additional con-
siderations. The problem of using (5) to study possible relations amongst the Fourier coefficients
is currently under investigation.

1.5. General comments. If X is the Riemann surface associated to a congruence subgroup, then
the series φ∞,∞(s) can be expressed in terms of Dirichlet L-functions associated to even characters
with conductors dividing the level (see [8] or [10]). With these computations, one can rewrite (5)
further so that one obtains an expression involving Rankin-Selberg L-functions associated to cusp
forms of weight two, Maass forms, non-holomorphic Eisenstein series, and classical zeta functions.
However, the relation stated in (5) holds for any finite volume hyperbolic Riemann surface without
elliptic fixed points. In order to eliminate the restriction that X has no elliptic fixed points, one
needs to revisit the proof of (2), and possibly (1), in order to allow for elliptic fixed points. As
stated above, this project currently is under investigation in [2]; however, we choose to focus in
this paper on deriving (5) with the simplifying assumption that X has no elliptic fixed points in
order to draw attention to the presence of an L-function relation coming from the basic identity
(2). We will leave for future work the generalization of (2) to arbitrary finite volume hyperbolic
Riemann surfaces, which may have elliptic fixed points, and derive the relation analogous to (5).

From Riemannian geometry, theta functions naturally appear as the trace of a heat kernel, and
the small time expansion of the heat kernel has a first-order term which is somewhat universal
and a second-order term which involves integrals of a curvature of the Riemannian metric. In this
regard, (5) suggests that the sum of Rankin-Selberg L-functions

g∑
j=1

L̃(s, fj ⊗ f j)

represents some type of curvature integral relative to the theta function Θε(s). Further investiga-
tion of this heuristic observation is warranted.

1.6. Outline of the paper. In section 2, we recall necessary background material and establish
additional notation. In section 3, we prove (2) and further develop the identity (2) using the
spectral expansion of the heat kernel K(t; z, w). In section 4, we evaluate the integrals in (3)
using the revised analytic expressions of (2), and in section 5, we gather the computations from
section 4 and prove (5).

1.7. Acknowledgements. The resuls of this article were presented by the first named author
during the MPIM/HIM Program in Representation Theory, Complex Analysis, and Integral Ge-
ometry. We thank the organizers Gindikin and Krötz for the opportunity to participate in this
Program.
Both authors thank the referee for the suggestions which helped to improve the manuscript.
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2 Notations and preliminaries

2.1. Hyperbolic and canonical metrics. Let Γ be a Fuchsian subgroup of the first kind of
PSL2(R) acting by fractional linear transformations on the upper half-plane H = {z ∈ C | z =
x+ iy, y > 0}. We let X be the quotient space Γ\H and denote by g the genus of X. We assume
that Γ has no elliptic elements and that X has p ≥ 1 cusps. We identify X locally with its universal
cover H.
In the sequel µ denotes a (smooth) metric on X, i.e., µ is a positive (1, 1)-form on X. In particular,
we let µ = µhyp denote the hyperbolic metric on X, which is compatible with the complex structure
of X, and has constant negative curvature equal to minus one. Locally, we have

µhyp(z) =
i

2
· dz ∧ dz

y2
.

We write volhyp(X) for the hyperbolic volume of X; recall that volhyp(X) is given by 2π(2g−2+p).
The scaled hyperbolic metric µ = µshyp is simply the rescaled hyperbolic metric µhyp/volhyp(X),
which measures the volume of X to be one.
Let Sk(Γ) denote the C-vector space of cusp forms of weight k with respect to Γ equipped with
the Petersson inner product

〈f, g〉 =
i

2

∫
X

f(z) g(z) yk
dz ∧ dz

y2

(
f, g ∈ Sk(Γ)

)
.

By choosing an orthonormal basis {f1, ..., fg} of S2(Γ) with respect to the Petersson inner product,
the canonical metric µ = µcan of X is given by

µcan(z) =
1

g
· i

2

g∑
j=1

|fj(z)|2 dz ∧ dz.

We denote the hyperbolic Laplacian on X by ∆hyp; locally, we have

∆hyp = −y2

(
∂2

∂x2
+

∂2

∂y2

)
. (6)

The discrete spectrum of ∆hyp is given by the increasing sequence of eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ . . .

2.2. Modular forms, Maass forms, and Eisenstein series. Throughout we assume, as
before, that the cusp width of the cusp i∞ equals b. In subsection 1.4, we established the notation
for holomorphic cusp forms of weight two and Maass forms with respect to Γ, as well as the
corresponding Rankin-Selberg L-functions, so we do not repeat the discussion here.

The eigenfunctions for the continuous spectrum of ∆hyp are provided by the Eisenstein series EP,s′

(associated to each cusp P of X) with eigenvalue λ = s′(1−s′), hence s′ = 1/2 + ir (r ∈ R). They
have Fourier expansions of the form

EP,s′(z) = αP,s′,0(y) +
∑
n 6=0

αP,s′,nWs′(nz/b),

where

αP,s′,0(y) = δP,∞y
s′ + φP,∞(s′)y1−s′ ,

Ws′(w) = 2
√

cosh(πr)
√
|Im(w)|Kir(2π|Im(w)|)e2πiRe(w) (w ∈ C);

here δP,∞ is the Kronecker delta and φP,∞(s′) is the (P,∞)-th entry of the scattering matrix (see
[11]). For example, the function φ∞,∞(s′) is given by a Dirichlet series of the form

φ∞,∞(s′) =
√
π

Γ(s′ − 1/2)

Γ(s′)

∞∑
n=1

an
µ2s′
n

, (7)
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where the quantities an and µn are explicitly given in [11]), p. 60.

For s ∈ C, Re(s) > 1, we define the completed Rankin-Selberg L-function attached to EP,s′ by

L̃(s, EP,s′ ⊗ EP,s′) = Gr(s) · L(s, EP,s′ ⊗ EP,s′), (8)

where

Gr(s) = s(1− s)π−2sΓ2
(s

2

)
Γ
(s

2
+ ir

)
Γ
(s

2
− ir

)
ζ(2s),

L(s, EP,s′ ⊗ EP,s′) =
∑
n 6=0

|αP,s′,n|2

(n/b)s−1
.

2.3. Hyperbolic heat kernel and variants. The hyperbolic heat kernel KH(t; z, w) (t ∈ R>0;
z, w ∈ H) on H is given by the formula

KH(t; z, w) = KH(t; ρ) =

√
2e−t/4

(4πt)3/2

∞∫
ρ

re−r
2/(4t)√

cosh(r)− cosh(ρ)
dr ,

where ρ = dhyp(z, w) denotes the hyperbolic distance from z to w. The hyperbolic heat kernel
K(t; z, w) (t ∈ R>0; z, w ∈ X) on X is obtained by averaging over the elements of Γ, namely

K(t; z, w) =
∑
γ∈Γ

KH
(
t; z, γ(w)

)
.

The heat kernel on X satisfies the equations(
∂

∂t
+ ∆hyp,z

)
K(t; z, w) = 0 (w ∈ X),

lim
t→0

∫
X

K(t; z, w) f(w)µhyp(w) = f(z) (z ∈ X)

for all C∞-functions f on X. As a shorthand, we write K(t; z) = K(t; z, z).
With the notations from subsection 2.2, we introduce the modified heat kernel function

Kcusp(t; z) = K(t; z)−∑
0≤λj<1/4

|αj,0|2y2−2sje−λjt − 1

4π

∑
P cusp

∞∫
−∞

|δP,∞y1/2+ir + φP,∞(s)y1/2−ir|2e−(r2+1/4)tdr. (9)

Denoting by Γ∞ the stabilizer of the cusp ∞, we can define the following partial heat kernel
functions

K0(t; z) =
∑

γ∈Γ\Γ∞

KH
(
t; z, γ(z)

)
, (10)

K∞(t; z) =
∑
γ∈Γ∞

KH
(
t; z, γ(z)

)
(11)

giving rise to the decomposition

K(t; z) = K0(t; z) +K∞(t; z).
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3 The fundamental identity

In this section we derive the identity (2) by studying the relation (1) for a degenerating family of
compact hyperbolic Riemann surfaces. The corresponding statement is proven in Lemma 3.1. In
the remainder of the section, we manipulate the terms in (2) assuming p > 0 in order to obtain an
equivalent formulation of the relation which then will be suited for our computations in the sub-
sequent sections. Specifically, we first express the heat kernel on the underlying Riemann surface
in terms of its spectral expansion, which involves Maass forms and non-holomorphic Eisenstein
series, and we remove the terms associated to the constant terms in the Fourier expansions of the
Maass forms and the non-holomorphic Eisenstein series (see Proposition 3.3). We then express
the heat kernel as a periodization over the uniformizing group and remove the contribution from
the parabolic subgroup associated to a single cusp (see Lemma 3.8 as well as the preliminary
computations and remarks). The main result of this section is Theorem 3.9.

3.1. Lemma. With the above notations, we have

µcan(z) =

(
1 +

p

2g

)
µshyp(z) +

1

2g

∞∫
0

∆hypK(t; z)dt µhyp(z). (12)

Proof. The proof of identity (12) in case X is compact, i.e. p = 0, for any g ≥ 2 is given in [13] as
well as the appendix to [16]. We will now prove (12) by induction on p by considering degenerating
sequences of finite volume hyperbolic Riemann surfaces. More specifically, we assume that (12)
holds for any hyperbolic Riemann surface of genus g with p cusps, and then prove the relation for
hyperbolic Riemann surfaces of any genus with p+ 1 cusps. Whereas the method of proof can be
viewed as standard perturbation theory, we choose to include all details in order to determine all
constants, specifically the multiplicative factor of µhyp in (2).

If X has genus g and p + 1 cusps, then, following the methodology of [12] and [18], one can
construct a degenerating family {X`} with the following properties:

– For ` > 0, each surface X` has genus g + 1 and p cusps,

– the degenerating family has precisely one pinching geodesic of length ` approaching zero,

– the limiting surface X0, which necessarily has two components, is such that X is isometric
to one of the two components.

Let X and X ′ be the two components of X0 with hyperbolic volumes v = volhyp(X) and v′ =
volhyp(X ′), respectively; by construction, X ′ has genus one and one cusp. the hyperbolic volume of
X` equals v+ v′, and the induction hypothesis for X` reads (using an obvious change in notation)

2(g + 1)µcan,X`(z) =
(
2(g + 1) + p

)
µshyp,X`(z) +

∞∫
0

∆hyp,X`KX`(t; z)dt µhyp,X`(z). (13)

We now determine the limiting value of (13) through degeneration. Throughout, we will let z ∈ X`

be any point which limits to a point z ∈ X.

From [12], we have that

lim
`→0

(
2(g + 1)µcan,X`(z)

)
= 2gµcan,X(z). (14)

From [1], we recall that

lim
`→0

(
µhyp,X`(z)

)
= µhyp,X(z),

which leads to

lim
`→0

(
(2(g + 1) + p)µshyp,X`(z)

)
=

2(g + 1) + p

v + v′
µhyp,X(z). (15)
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Let now λ1,X` denote the smallest non-zero eigenvalue of the hyperbolic Laplacian ∆hyp,X` on X`,
with corresponding eigenfunction ϕ1,X` . From [18], we have that

lim
`→0

(
KX`(t; z)−

1

v + v′
− ϕ2

1,X`
(z)e−λ1,X`

t

)
= KX(t; z)− 1

v

with uniformity of the convergence for all t > 0 (see [18], Lemma 3.2). The proof given in [18]
extends (see Remark 3.2) to show that

lim
`→0

∆hyp,X`

(
KX`(t; z)−

1

v + v′
− ϕ2

1,X`
(z)e−λ1,X`

t

)
= ∆hyp,X

(
KX(t; z)− 1

v

)
, (16)

with a corresponding uniformity result, which allows us to arrive at the conclusion that

lim
`→0

 ∞∫
0

∆hyp,X`KX`(t; z)dt−
∆hyp,X`ϕ

2
1,X`

(z)

λ1,X`

 =

∞∫
0

∆hyp,XKX(t; z)dt. (17)

By substituting the limit computations (14), (15), and (17) into (13), we are led to

2gµcan,X(z) =
∞∫

0

∆hyp,XKX(t; z)dt µhyp,X(z) +

(
2(g + 1) + p

v + v′
+ lim
`→0

(
∆hyp,X`ϕ

2
1,X`

(z)

λ1,X`

))
µhyp,X(z),

so we are left to prove that

2(g + 1) + p

v + v′
+ lim
`→0

(
∆hyp,X`ϕ

2
1,X`

(z)

λ1,X`

)
=

2g + (p+ 1)

v
. (18)

The construction of the degenerating family {X`} from [18] begins by constructing a degener-
ating family of compact Riemann surfaces with distinguished points, after which one obtains a
degenerating family of finite volume hyperbolic Riemann surfaces by employing the uniformization
theorem. As a result, there is an underlying real parameter u which describes the degenerating
family {X`}. An asymptotic relation between u and ` is established in [21]; for our purposes, it
suffices to use that `→ 0 as u→ 0, and conversely. With all this, it is proven in [21] that one has
the asymptotic expansion

λ1,X` = α1u+O(u2) as u→ 0 (19)

for some constant α1. In addition, one has from [21] the asymptotic expansions

ϕ1,X`(z) = c0,X(z) + c1,X(z)u+O(u2) as u→ 0 (z ∈ X), (20)

and

ϕ1,X`(z) = c0,X′(z) + c1,X′(z)u+O(u2) as u→ 0 (z ∈ X ′). (21)

In [18], it is proven that small eigenvalues and small eigenfunctions converge through degeneration;
hence, the functions c0,X and c0,X′ are constants. More precisely, since ϕ1,X` is orthogonal to the
constant functions on X` and has L2-norm one, we have the relations

c0,Xv + c0,X′v
′ = 0 and c20,Xv + c20,X′v

′ = 1,

from which we immediately derive

c0,X = ±
(

v′

v(v + v′)

)1/2

and c0,X′ = ∓
(

v

v′(v + v′)

)1/2

. (22)
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The uniformity of the convergence of heat kernels through degeneration from [18] and the con-
vergence of hyperbolic metrics through degeneration from [1], allow one to conclude that, since
ϕ1,X` is an eigenfunction of ∆hyp,X` with eigenvalue λ1,X` , the asymptotic expansions (19) and
(20) yield the relation (keeping in mind that the function c0,X is constant)

∆hyp,Xc1,X(z) = α1c0,X . (23)

In the same way, we derive from (20) the asymptotic expansion

∆hyp,X`ϕ
2
1,X`

(z) = ∆hyp,Xc
2
0,X(z) + ∆hyp,X

(
2c0,X(z)c1,X(z)

)
u+O(u2)

= 2c0,X∆hyp,Xc1,X(z)u+O(u2) as u→ 0. (24)

Using (19), (22), (23), and (24), we arrive at

lim
`→0

(
∆hyp,X`ϕ

2
1,X`

(z)

λ1,X`

)
= lim
u→0

(
2c0,X∆hyp,Xc1,X(z)u+O(u2)

α1u+O(u2)

)
= 2c2X,0 =

2v′

v(v + v′)
.

Recalling the formulae

v = 2π
(
2g − 2 + (p+ 1)

)
and v′ = 2π,

we finally compute

2(g + 1) + p

v + v′
+

2v′

v(v + v′)
=
v(v/(2π) + 3)

v(v + v′)
+

2v′

v(v + v′)
=

1

2π

v2 + 3vv′ + 2v′2

v(v + v′)
=

1

2π

v + 2v′

v
=

2g + (p+ 1)

v
,

which completes the proof of claim (18) and hence the proof of the lemma.

3.2. Remark. We describe here how one can extend the arguments from [18] and references
therein to prove formula (16); we continue to use the notation from the proof of Lemma 3.1. The
pointwise convergence

lim
`→0

∆hyp,X`KX`(t; z) = ∆hyp,XKX(t; z) (25)

follows immediately from [17], Theorem 1.3 (iii). Using the inverse Laplace transform, one con-
cludes from (25) the convergence of small eigenvalues and small eigenfunctions (see, for example,
[9] for complete details) to conclude that (16) holds pointwise for all t > 0. Theorem 1.3 in [17]
states further conditions under which the convergence in (25) is uniform, which immediately im-
plies that the convergence in (16) holds for fixed z and t lying in any bounded, compact subset of
t > 0, so it remains to prove uniform convergence for t near zero and near infinity. The uniformity
of the convergence near zero is established as part of the proof of Theorem 1.3 in [17] since the
identity term does not contribute to the realization of the heat kernel through group periodization.
What remains is to prove uniformity of the convergence in (16) as t approaches infinity. For this,
the method of proof of Lemma 3.2 in [18] applies. More specifically, one writes the function

∆hyp,X`

(
KX`(t; z)−

1

v + v′
− ϕ2

1,X`
(z)e−λ1,X`

t

)
as the Laplace transform of a measure as in [18], p. 649. In this case, the measure is not bounded,
but standard bounds for the sup-norm of L2-eigenfunctions of the Laplacian imply that the mea-
sure is bounded by a positive measure, which suffices to apply the method of proof of Lemma 3.2
in [18]. With all this, one concludes the pointwise convergence asserted in (16) and integrable,
uniform bounds for all t > 0, from which (17) follows.
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3.3. Proposition. With the above notations, in particular using the form (7) for the function
φ∞,∞(s′), we have

µcan(z) =
1

4πg
µhyp(z) +

1

2g

∞∫
0

∆hypK
cusp(t; z)dt µhyp(z) +

1

g

∑
µn<1/y

2anµny
3√

1− (µny)2
µhyp(z). (26)

We point out that the sum in (26) vanishes if y � 0.

Proof. The proof is based on formula (12) from Lemma 3.1 and consists in substituting the inte-
grand K(t; z) by Kcusp(t; z). We compute

∆hypK(t; z) = ∆hypK
cusp(t; z)−

∑
0≤λj<1/4

|αj,0|2(2− 2sj)(1− 2sj)y
2−2sje−λjt−

1

4π

∑
P cusp

∞∫
−∞

y2 ∂
2

∂y2
(δP,∞y + |φP,∞(1/2 + ir)|2y + δP,∞φP,∞(1/2 + ir)y1−2ir+

δP,∞φP,∞(1/2 + ir)y1+2ir)e−(r2+1/4)tdr =

∆hypK
cusp(t; z)−

∑
0≤λj<1/4

|αj,0|2(2− 2sj)(1− 2sj)y
2−2sje−λjt−

1

4πi

∫
Re(s)=1/2

(φ∞,∞(s)(2− 2s)(1− 2s)y2−2s + φ∞,∞(1− s)2s(2s− 1)y2s)e−s(1−s)tds.

Next, we integrate against t to get

∞∫
0

∆hypK(t; z)dt =

∞∫
0

∆hypK
cusp(t; z)dt−

∑
0≤λj<1/4

|αj,0|2
(2− 2sj)(1− 2sj)

λj
y2−2sj−

1

4πi

∫
Re(s)=1/2

(φ∞,∞(s)(2− 2s)(1− 2s)y2−2s + φ∞,∞(1− s)2s(2s− 1)y2s)
ds

s(1− s)
=

∞∫
0

∆hypK
cusp(t; z)dt−

∑
0≤λj<1/4

|αj,0|2
(2− 2sj)(1− 2sj)

λj
y2−2sj−

4

4πi

∫
Re(s)=1/2

φ∞,∞(s)
1− 2s

s
y2−2sds.

Now we use the residue theorem to evaluate the last integral (be aware of the orientation).

− 4

4πi

∫
Re(s)=1/2

φ∞,∞(s)
1− 2s

s
y2−2sds =

−
∑

residues sj

(−2)Ress=sj (φ∞,∞(s))
1− 2sj
sj

y2−2sj + 2

(
− 1

2πi

) ∫
Re(s)=a

φ∞,∞(s)
1− 2s

s
y2−2sds;

here a > 1. It is known that the residues of φ∞,∞ occur at s = 1 with residue 1/volhyp(X) and at
s = sj such that 0 < λj = sj(1 − sj) < 1/4 with residue |αj,0|2 (see [20], p. 652). Therefore, we
get

− 4

4πi

∫
Re(s)=1/2

φ∞,∞(s)
1− 2s

s
y2−2sds =

− 2

volhyp(X)
+

∑
0<λj<1/4

|αj,0|2
(2− 2sj)(1− 2sj)

λj
y2−2sj +

2

2πi

∫
Re(s)=a

φ∞,∞(s)
2s− 1

s
y2−2sds.
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We are left to determine the latter integral. By substituting formula (7) for φ∞,∞ and using the
functional equation for the Γ-function, we first compute

1

2πi

∫
Re(s)=a

φ∞,∞(s)
2s− 1

s
y2−2sds =

∞∑
n=1

2
√
πany

2 · 1

2πi

∫
Re(s)=a

Γ(s+ 1/2)

Γ(s+ 1)

(
1

(µny)2

)s
ds

=

∞∑
n=1

2any
2 · 1

2πi

∫
Re(s)=a

√
π

Γ(s+ 1/2)

Γ(s+ 1)
estnds,

where tn = − log
(
(µny)2

)
. Recalling formula (10.5) of [19], p. 307, namely

1

2πi

∫
Re(s)=a

√
π

Γ(s+ 1/2)

Γ(s+ 1)
estds =


1√
et − 1

, t > 0,

0, t < 0,

we obtain

1

2πi

∫
Re(s)=a

φ∞,∞(s)
2s− 1

s
y2−2sds =

∑
tn>0

2any
2

√
etn − 1

=
∑

µn<1/y

2anµny
3√

1− (µny)2
.

Summing up, we get

∞∫
0

∆hypK(t; z)dt =

∞∫
0

∆hypK
cusp(t; z)dt− 2

volhyp(X)
+

∑
µn<1/y

4anµny
3√

1− (µny)2
.

The claim now follows by observing that(
1 +

p

2g

)
µshyp(z)− 1

2g
· 2

volhyp(X)
µhyp(z) =

1

4πg
µhyp(z).

This completes the proof of the proposition.

3.4. Remark. By our definition, the partial heat kernel K∞(t; z) is given by

K∞(t; z) =

∞∑
n=−∞

KH(t; z, z + nb).

Recalling the formula for the hyperbolic distance dhyp(z, w), namely (see [3], p. 130)

cosh
(
dhyp(z, w)

)
= 1 +

|z − w|2

2Im(z)Im(w)
,

which specializes to

cosh
(
dhyp(z, z + nb)

)
= 1 +

(nb)2

2y2
,

shows that the function KH(t; z, z + nb) is independent of x, and hence can be represented in the
form

KH(t; z, z + nb) = ft

(
b√
2y
n

)
(27)

with ft(w) = KH(t; cosh−1(1 + w2)). Therefore, we can write

K∞(t; z) =

∞∑
n=−∞

ft

(
b√
2y
n

)
. (28)



12

By the general Poisson formula we then have

∞∑
n=−∞

ft

(
b√
2y
n

)
=

√
2y

b

∞∑
n=−∞

f̂t

(
2π
√

2y

b
n

)
,

where f̂t(v) denotes the Fourier transform of ft(w) given by

f̂t(v) =

∞∫
−∞

ft(w)e−iwvdw.

Summarizing we arrive at

K∞(t; z) =

√
2y

b
f̂t(0) +

2
√

2y

b

∞∑
n=1

f̂t

(
2π
√

2y

b
n

)
. (29)

3.5. Definition. With the above notations, we set

Kcusp
∞ (t; z) = K∞(t; z)−

√
2y

b
f̂t(0),

Kcusp
0 (t; z) = Kcusp(t; z)−Kcusp

∞ (t; z).

3.6. Lemma. For the Fourier transform f̂t of ft, we have the formula

f̂t(v) =

√
2

π2

∞∫
0

r sinh(πr)e−(r2+1/4)tK2
ir(v/

√
2)dr.

Proof. Using the explicit formula for the heat kernel on the upper half-plane (see [5], p. 246), we
have

KH(t; z, w) =
1

2π

∞∫
0

r tanh(πr)e−(r2+1/4)tP−1/2+ir

(
cosh(dhyp(z, w))

)
dr,

from which we get

ft(w) =
1

2π

∞∫
0

r tanh(πr)e−(r2+1/4)tP−1/2+ir(1 + w2)dr. (30)

Taking into account that ft(w) is an even function, the Fourier transform f̂t of ft can be written
in the form

f̂t(v) =

∞∫
−∞

ft(w)e−iwvdw = 2

∞∫
0

ft(w) cos(wv)dw.

By means of formula 7.162 (5) of [7], p. 807, the proof of the lemma can now be easily completed.

3.7. Lemma. The function Kcusp
∞ (t; z) decays exponentially as y tends to infinity.

Proof. From Lemma 3.6, we note that the function f̂t(v) decays exponentially as v tends to infinity.
From this we immediately conclude that Kcusp

∞ (t; z) decays exponentially as y tends to infinity.
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3.8. Lemma. With the above notations, we have

∞∫
0

∆hypK∞(t; z)dt =
1

2π

(
2πy/b

sinh(2πy/b)

)2

− 1

2π
. (31)

Proof. First, we recall for z, w ∈ H, z 6= w, the relation

∞∫
0

KH(t; z, w)dt = − 1

4π
log

(∣∣∣∣z − wz − w

∣∣∣∣2
)
.

Substituting w = γ(z), summing over γ ∈ Γ∞, γ 6= id, and applying ∆hyp, then yields the formula

∞∫
0

∆hypK∞(t; z)dt = − 1

4π

∞∑
n=−∞
n 6=0

∆hyp log

(∣∣∣∣z − (z + nb)

z − (z + nb)

∣∣∣∣2
)

=

− 2y2

π

∞∑
n=−∞
n 6=0

(nb)2 − 4y2

((nb)2 + 4y2)2
= −2y2

πb2

∞∑
n=−∞
n6=0

n2 − (2y/b)2

(n2 + (2y/b)2)2
.

Applying now formula 1.421 (5) of [7], p. 36, namely

∞∑
n=−∞

n2 − w2

(n2 + w2)2
= −

(
π

sinh(πw)

)2

,

with w = 2y/b, immediately completes the proof of the lemma.

3.9. Theorem. We set

Φ(y) =

(
2πy/b

sinh(2πy/b)

)2

.

With the above notations, we then have the fundamental identity

µcan(z) =

1

2g

∞∫
0

∆hypK
cusp
0 (t; z)dt µhyp(z) +

1

4πg
Φ(y)µhyp(z) +

1

g

∑
µn<1/y

2anµny
3√

1− (µny)2
µhyp(z). (32)

Proof. The proof consists in combining Proposition 3.3 with Lemma 3.8 together with the obser-
vation that

∆hypK
cusp(t; z) = ∆hyp

(
Kcusp

0 (t; z) +Kcusp
∞ (t; z)

)
= ∆hyp

(
Kcusp

0 (t; z) +K∞(t; z)
)
,

since ∆hyp

(
yf̂t(0)

)
= 0.

4 Preliminary computations

We will multiply the fundamental identity (32) of Theorem 3.9 with the function

h(s, y) =
2g

b
π−sΓ(s)ζ(2s)ys (33)
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and integrate the resulting form along x and y. In this section we first calculate the integrals
involving the form µcan, the function Φ, and the sum over the µn’s, respectively. In the second
part of the section we treat the term involving Kcusp

0 partly; this computation will be completed
in the next section.

4.1. Lemma. With the above notations, we have

∞∫
0

b∫
0

h(s, y)µcan(z) =

g∑
j=1

L̃(s, fj ⊗ f j). (34)

Proof. The proof is elementary, so we omit further details.

4.2. Lemma. With the above notations, we have

1

4πg

∞∫
0

b∫
0

h(s, y)Φ(y)µhyp(z) = 4πζ(s)bs−1G∞(s). (35)

Proof. We start with the following observation. By differentiating the relation

1

1− e−2w
=

∞∑
n=0

e−2nw

we get

e−2w

(1− e−2w)2
=

∞∑
n=1

ne−2nw,

which gives

1

sinh2(w)
=

4

(ew − e−w)2
=

4e−2w

(1− e−2w)2
= 4

∞∑
n=1

ne−2nw.

We now turn to the proof of the lemma. We compute

1

4πg

∞∫
0

b∫
0

h(s, y)Φ(y)µhyp(z) =
π−sΓ(s)ζ(2s)

2π

∞∫
0

ysΦ(y)
dy

y2
=

π−sΓ(s)ζ(2s)

2π
· (2π)2

b2

∞∫
0

ys

sinh2(2πy/b)
dy =

π−sΓ(s)ζ(2s)

2π
· (2π)2

b2

∞∫
0

4ys+1
∞∑
n=1

ne−4πny/b dy

y
=

23π−s+1Γ(s)ζ(2s)b−2
∞∑
n=1

n

∞∫
0

ys+1e−4πny/b dy

y
=

23π−s+1Γ(s)ζ(2s)b−2Γ(s+ 1)

∞∑
n=1

n

(4πn/b)(s+1)
=

2−2s+1π−2sΓ(s)Γ(s+ 1)ζ(s)ζ(2s)bs−1.

The claim now follows using the definition of the function G∞(s).
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4.3. Lemma. With the above notations, we have

1

g

∞∫
0

b∫
0

h(s, y)
∑

µn<1/y

anµny√
1− (µny)2

dxdy = π−s
s

s+ 1
Γ(s)ζ(2s)φ∞,∞

(
s+ 1

2

)
. (36)

Proof. Using the B-function, we compute

1

g

∞∫
0

b∫
0

h(s, y)
∑

µn<1/y

anµny√
1− (µny)2

dxdy = 2π−sΓ(s)ζ(2s)

∞∫
0

∑
y<1/µn

anµny
s+1√

1− (µny)2
dy =

2π−sΓ(s)ζ(2s)

∞∑
n=1

an

µs+1
n

1∫
0

ws+1

√
1− w2

dw = π−sΓ(s)ζ(2s)B

(
s

2
+ 1,

1

2

) ∞∑
n=1

an

µs+1
n

=

π−sΓ(s)ζ(2s)
Γ(s/2 + 1)Γ(1/2)

Γ
(
(s+ 3)/2

) ∞∑
n=1

an

µ
2 s+1

2
n

=

π−sΓ(s)ζ(2s)
s/2 Γ

(
(s+ 1)/2− 1/2

)√
π

(s+ 1)/2 Γ
(
(s+ 1)/2

) ∞∑
n=1

an

µ
2 s+1

2
n

=

π−s
s

s+ 1
Γ(s)ζ(2s)φ∞,∞

(
s+ 1

2

)
.

4.4. Remark. For ε > 0, we can write

1

2g

∞∫
0

b∫
0

∞∫
0

h(s, y)∆hypK
cusp
0 (t; z)dtdx

dy

y2
=

1

2g

∞∫
ε

∞∫
0

b∫
0

h(s, y)∆hypK
cusp
0 (t; z)dx

dy

y2
dt+ o(1)

as ε→ 0. Using now the specific form of the hyperbolic Laplacian, we integrate by parts in each
real variable x and y. Since the integrand is invariant under x 7→ x + b, the terms involving
derivatives with respect to x will vanish. What remains to be done is the integration by parts
with respect to y. Substituting

Kcusp
0 (t; z) = Kcusp(t; z)−Kcusp

∞ (t; z),

we arrive in this way at the formula

1

2g

∞∫
0

b∫
0

∞∫
0

h(s, y)∆hypK
cusp
0 (t; z)dtdx

dy

y2
=

s(1− s)
2g

lim
ε→0

 ∞∫
ε

∞∫
0

b∫
0

h(s, y)Kcusp(t; z)dx
dy

y2
dt−

∞∫
ε

∞∫
0

b∫
0

h(s, y)Kcusp
∞ (t; z)dx

dy

y2
dt

 . (37)

We point out that for the right-hand side of formula (37) the individual triple integrals over
h(s, y)Kcusp(t; z) and h(s, y)Kcusp

∞ (t; z) do not exist for ε = 0, which justifies the need to introduce
the parameter ε. For further discussion of this point, see also Proposition 5.5 below.

4.5. Lemma. With the above notations, we have

1

2g

∞∫
0

b∫
0

h(s, y)
(
|ϕj(z)|2 − |αj,0(y)|2

)
dx

dy

y2
=

cosh(πrj)

2s(1− s)
L̃(s, ϕj ⊗ ϕj). (38)
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Proof. We compute

1

2g

∞∫
0

b∫
0

h(s, y)
(
|ϕj(z)|2 − |αj,0(y)|2

)
dx

dy

y2
=

π−s

b
Γ(s)ζ(2s)

∞∫
0

b∫
0

ys−2
(
|ϕj(z)|2 − |αj,0(y)|2

)
dxdy =

π−s

b
Γ(s)ζ(2s)

∞∫
0

b∫
0

ys−2

 ∑
n,m 6=0

αj,nαj,mWsj

(nz
b

)
W sj

(mz
b

)
+

αj,0(y)
∑
n 6=0

αj,nWsj

(nz
b

)
+ αj,0(y)

∑
m 6=0

αj,mW sj

(mz
b

)dxdy =

π−sΓ(s)ζ(2s)

∞∫
0

ys−2
∑
n 6=0

|αj,n|2
∣∣∣Wsj

(nz
b

)∣∣∣2 dy =

π−sΓ(s)ζ(2s) cosh(πrj)

∞∫
0

ys−2
∑
n6=0

|αj,n|2
(

4|n|y
b

)
K2
irj

(
2π|n|y
b

)
dy =

4π−sΓ(s)ζ(2s) cosh(πrj)
∑
n 6=0

|αj,n|2
(
|n|
b

) ∞∫
0

ysKirj

(
2π|n|y
b

)
Kirj

(
2π|n|y
b

)
dy

y
.

With the change of variables

u =
2π|n|y
b

,

we then obtain (see [11], p. 205)

1

2g

∞∫
0

b∫
0

h(s, y)
(
|ϕj(z)|2 − |αj,0(y)|2

)
dx

dy

y2
=

4π−sΓ(s)ζ(2s) cosh(πrj)
∑
n 6=0

|αj,n|2
(
|n|
b

) ∞∫
0

usKirj (u)Kirj (u)

(
2π|n|
b

)−s
du

u
=

4π−s(2π)−sΓ(s)ζ(2s) cosh(πrj)
∑
n 6=0

|αj,n|2
(
|n|
b

)(
|n|
b

)−s ∞∫
0

usKirj (u)Kirj (u)
du

u
=

4π−s(2π)−sΓ(s)ζ(2s) cosh(πrj)
∑
n 6=0

|αj,n|2
(
|n|
b

)(
|n|
b

)−s
×

× 2s−3

Γ(s)
Γ
(s

2

)
Γ
(s

2

)
Γ
(s

2
+ irj

)
Γ
(s

2
− irj

)
=

22−s+s−3Grj (s) cosh(πrj)

s(1− s)
∑
n 6=0

|αj,n|2

(|n|/b)s−1
=

cosh(πrj)

2s(1− s)
L̃(s, ϕj ⊗ ϕj).

4.6. Lemma. With the above notations, we have

1

2g

∞∫
0

b∫
0

h(s, y)
(
|EP,1/2+ir(z)|2 − |αP,1/2+ir,0(y)|2

)
dx

dy

y2
=

cosh(πr)

2s(1− s)
L̃(s, EP,1/2+ir ⊗ EP,1/2−ir).
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Proof. The proof runs along the same lines as the proof of Lemma 4.5.

4.7. Proposition. With the above notations, we have for any ε > 0

s(1− s)
2g

∞∫
ε

∞∫
0

b∫
0

h(s, y)Kcusp(t; z)dx
dy

y2
dt =

∑
λj>0

cosh(πrj)e
−λjε

2λj
L̃(s, ϕj ⊗ ϕj)

+
1

8π

∑
P cusp

∞∫
−∞

cosh(πr)e−(r2+1/4)ε

r2 + 1/4
L̃(s, EP,1/2+ir ⊗ EP,1/2−ir)dr. (39)

Proof. Recall that

Kcusp(t; z) =

K(t; z)−
∑

0≤λj<1/4

|αj,0(y)|2e−λjt − 1

4π

∑
P cusp

∞∫
−∞

|αP,1/2+ir,0(y)|2e−(r2+1/4)tdr =

∑
λj>0

(
|ϕj(z)|2 − |αj,0(y)|2

)
e−λjt +

1

4π

∑
P cusp

∞∫
−∞

(
|EP,1/2+ir(z)|2 − |αP,1/2+ir,0(y)|2

)
e−(r2+1/4)tdr.

(40)

By multiplying (38) by e−λjt, adding over all positive eigenvalues λj , and integrating along t from
ε to ∞, we get

1

2g

∑
λj>0

∞∫
ε

∞∫
0

b∫
0

h(s, y)
(
|ϕj(z)|2 − |αj,0(y)|2

)
e−λjtdx

dy

y2
dt =

∑
λj>0

∞∫
ε

cosh(πrj)

2s(1− s)
L̃(s, ϕj ⊗ ϕj)e−λjtdt =

1

s(1− s)
∑
λj>0

cosh(πrj)e
−λjε

2λj
L̃(s, ϕj ⊗ ϕj). (41)

Using Lemma 4.6, we analogously find

1

4π

1

2g

∑
P cusp

∞∫
−∞

∞∫
ε

∞∫
0

b∫
0

h(s, y)
(
|EP,1/2+ir(z)|2 − |αP,1/2+ir,0(y)|2

)
e−(r2+1/4)tdx

dy

y2
dtdr =

1

4π

∑
P cusp

∞∫
−∞

∞∫
ε

cosh(πr)

2s(1− s)
L̃(s, EP,1/2+ir ⊗ EP,1/2−ir)e−(r2+1/4)tdtdr =

1

8π

1

s(1− s)
∑
P cusp

∞∫
−∞

cosh(πr)e−(r2+1/4)ε

r2 + 1/4
L̃(s, EP,1/2+ir ⊗ EP,1/2−ir)dr. (42)

By combining (41) and (42) with (40), and multiplying by s(1− s), we complete the proof of the
proposition.

5 The L-function relation

As stated before, our computations amount to computing the integral of the identity in Theo-
rem 3.9 when multiplied by h(s, y). As stated in Remark 4.4, we write

Kcusp
0 (t; z) = Kcusp(t; z)−Kcusp

∞ (t; z).
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The computations in the previous section allow us to compute the integral involving the term
Kcusp(t; z). In this section, we begin by computing the integral involving Kcusp

∞ (t; z), after which
we complete the proof of our main theorem, which we state in Theorem 5.4. To conclude this
section, we show the necessity of introducing the parameter ε > 0, as stated in Remark 4.4,
by computing the asymptotic behavior of the integral arising from the Kcusp

∞ (t; z)-term from
Theorem 3.9. This computation is given in Proposition 5.5.

5.1. Lemma. With the above notations, we have

1

2g

∞∫
0

b∫
0

h(s, y)Kcusp
∞ (t; z)dx

dy

y2
= 23/2(−s+1)π−2sΓ(s)ζ(s)ζ(2s)bs−1M(f̂t)(s), (43)

where M(f̂t) is the Mellin transform of the function f̂t defined in Remark 3.4 given by

M(f̂t)(s) =

∞∫
0

vsf̂t(v)
dv

v
. (44)

Proof. By Remark 3.4 and Definition 3.5, we have

1

2g

∞∫
0

b∫
0

h(s, y)Kcusp
∞ (t; z)dx

dy

y2
=

1

2g

∞∫
0

b∫
0

h(s, y)
2
√

2y

b

∞∑
n=1

f̂t

(
2π
√

2y

b
n

)
dx

dy

y2

= 2
√

2π−sΓ(s)ζ(2s)b−1

∞∫
0

ys
∞∑
n=1

f̂t

(
2π
√

2y

b
n

)
dy

y

= 2
√

2π−sΓ(s)ζ(2s)b−1
∞∑
n=1

∞∫
0

ysf̂t

(
2π
√

2y

b
n

)
dy

y
.

By the change of variables

v =
2π
√

2y

b
n,

we find

1

2g

∞∫
0

b∫
0

h(s, y)Kcusp
∞ (t; z)dx

dy

y2
= 2
√

2π−sΓ(s)ζ(2s)b−1
∞∑
n=1

bs

(2π
√

2n)s

∞∫
0

vsf̂t(v)
dv

v

= 23/2(−s+1)π−2sΓ(s)ζ(s)ζ(2s)bs−1M(f̂t)(s),

which completes the proof.

5.2. Lemma. The Mellin transform M(f̂t) of the function f̂t is given by

M(f̂t)(s) =
23s/2−5/2

π2

Γ2(s/2)

Γ(s)

∞∫
0

r sinh(πr)e−(r2+1/4)tΓ(s/2 + ir)Γ(s/2− ir)dr.

Proof. By Lemma 3.6, we have

f̂t(v) =

√
2

π2

∞∫
0

r sinh(πr)e−(r2+1/4)tK2
ir(v/

√
2)dr.
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This gives

M(f̂t)(s) =

∞∫
0

vsf̂t(v)
dv

v

=

∞∫
0

vs

√2

π2

∞∫
0

r sinh(πr)e−(r2+1/4)tK2
ir(v/

√
2)dr

 dv

v

=

√
2

π2

∞∫
0

r sinh(πr)e−(r2+1/4)t

 ∞∫
0

vsK2
ir(v/

√
2)

dv

v

 dr.

From [11], p. 205, we find

∞∫
0

vsK2
ir(v/

√
2)

dv

v
= 23s/2−3Γ2(s/2)

Γ(s/2 + ir)Γ(s/2− ir)
Γ(s)

.

Summing up, we get

M(f̂t)(s) =
23s/2−5/2

π2

Γ2(s/2)

Γ(s)

∞∫
0

r sinh(πr)e−(r2+1/4)tΓ(s/2 + ir)Γ(s/2− ir)dr,

which is the claimed formula.

5.3. Proposition. With the above notations, we have for any ε > 0

s(1− s)
2g

∞∫
ε

∞∫
0

b∫
0

h(s, y)Kcusp
∞ (t; z)dx

dy

y2
dt =

ζ(s)bs−1

2π2

∞∫
0

r sinh(πr)e−(r2+1/4)ε

r2 + 1/4
Gr(s)dr.

Proof. Using Lemma 5.1, we compute for the inner double integral

1

2g

∞∫
0

b∫
0

h(s, y)Kcusp
∞ (t; z)dx

dy

y2
= 23/2(−s+1)π−2sΓ(s)ζ(s)ζ(2s)bs−1M(f̂t)(s) =

2−1π−2π−2sΓ2(s/2)ζ(s)ζ(2s)bs−1

∞∫
0

r sinh(πr)e−(r2+1/4)tΓ(s/2 + ir)Γ(s/2− ir)dr.

The claim now follows using the definition of the function Gr(s) and integrating along t from ε
to ∞.

5.4. Theorem. With the above notations, we define for any ε > 0 and s ∈ C with Re(s) > 1,
the Θ-function

Θε(s) =

∞∑
λj>0

cosh(πrj)e
−λjε

2λj
L̃(s, ϕj ⊗ ϕj)

+
1

8π

∑
P cusp

∞∫
−∞

cosh(πr)e−(r2+1/4)ε

r2 + 1/4
L̃(s, EP,1/2+ir ⊗ EP,1/2+ir)dr

and the universal function

Fε(s) =
ζ(s)bs−1

2π2

∞∫
0

r sinh(πr)e−(r2+1/4)ε

r2 + 1/4
Gr(s)dr. (45)
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Then, we have the relation

lim
ε→0

(
Θε(s)− Fε(s)

)
=

g∑
j=1

L̃(s, fj ⊗ f j)− 4πζ(s)bs−1G∞(s)− π−s 2s

s+ 1
Γ(s)ζ(2s)φ∞,∞

(
s+ 1

2

)
.

Proof. The proof follows immediately from Lemma 4.1, Lemma 4.2, and Lemma 4.3, as well as
Proposition 4.7 and Proposition 5.3 in conjunction with Remark 4.4.

5.5. Proposition. With the above notations, we have the following asymptotics for the universal
function (45) for s ∈ R, s > 1,

lim
ε→0

(
ε
s−1
2 Fε(s)

)
=
ζ(s)bs−1

4π

Gi/2(s)

Γ(s/2 + 1/2)
.

Proof. Substituting v =
√
εr, we get

Fε(s) =
ζ(s)bs−1

2π2
e−ε/4

∞∫
0

v sinh(πv/
√
ε)e−v

2

v2 + ε/4
Gv/

√
ε(s)dv.

Now, recall the formula

lim
ε→0

(
e
− πv√

ε sinh

(
πv√
ε

))
=

1

2
, (46)

and, using Stirling’s formula, the asymptotics

lim
|y|→∞

(
|Γ(x+ iy)|e

π|y|
2 |y| 12−x

)
=
√

2π (47)

for fixed x ∈ R (see formula (6) of [6], p. 47). Writing

sinh

(
πv√
ε

) ∣∣∣∣Γ(s2 + i
v√
ε

)∣∣∣∣ ∣∣∣∣Γ(s2 − i v√ε
)∣∣∣∣ ( v√

ε

)1−s

=

e
− πv√

ε sinh

(
πv√
ε

) ∣∣∣∣Γ(s2 + i
v√
ε

)∣∣∣∣ e πv
2
√
ε

(
v√
ε

) 1−s
2
∣∣∣∣Γ(s2 − i v√ε

)∣∣∣∣ e πv
2
√
ε

(
v√
ε

) 1−s
2

,

we obtain, using (46) and (47),

lim
ε→0

(
ε
s−1
2 sinh

(
πv√
ε

) ∣∣∣∣Γ(s2 + i
v√
ε

)∣∣∣∣ ∣∣∣∣Γ(s2 − i v√ε
)∣∣∣∣) = πvs−1. (48)

We have

Gv/
√
ε(s) = H(s)Γ

(
s

2
+ i

v√
ε

)
Γ

(
s

2
− i v√

ε

)
= H(s)

∣∣∣∣Γ(s2 + i
v√
ε

)∣∣∣∣ ∣∣∣∣Γ(s2 − i v√ε
)∣∣∣∣

with

H(s) = s(1− s)π−2sΓ2
(s

2

)
ζ(2s).

From (48), we then find

lim
ε→0

(
ε
s−1
2 sinh

(
πv√
ε

)
Gv/

√
ε(s)

)
= πvs−1H(s),
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from which we derive

lim
ε→0

(
ε
s−1
2 Fε(s)

)
=
ζ(s)bs−1

2π2
lim
ε→0

ε s−1
2 e−ε/4

∞∫
0

v sinh(πv/
√
ε)e−v

2

v2 + ε/4
Gv/

√
ε(s)dv

 =

ζ(s)bs−1

2π2

∞∫
0

lim
ε→0

(
ε
s−1
2 sinh

(
πv√
ε

)
Gv/

√
ε(s)

)
e−v

2 dv

v
=
H(s)ζ(s)bs−1

2π

∞∫
0

e−v
2

vs−1 dv

v
.

Using the substitution w = v2, the remaining integral simplifies to

∞∫
0

e−v
2

vs−1 dv

v
=

1

2

∞∫
0

e−wv
s−1
2

dw

w
=

1

2
Γ

(
s

2
− 1

2

)
.

Summing up, we get

lim
ε→0

(
ε
s−1
2 Fε(s)

)
=
ζ(s)bs−1

4π

Gi/2(s)

Γ(s/2 + 1/2)
,

which is the claimed formula.
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