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Bounds on canonical Green’s functions

J. Jorgenson and J. Kramer

Abstract

A fundamental object in the theory of arithmetic surfaces is the Green’s function associ-
ated to the canonical metric. Previous expressions for the canonical Green’s function have
relied on general functional analysis or, when using specific properties of the canonical
metric, the classical Riemann theta function. In this article, we derive a new identity for
the canonical Green’s function involving the hyperbolic heat kernel. As an application of
our results, we obtain bounds for the canonical Green’s function through covers and for
families of modular curves.

1. Introduction

1.1

In [Ara74], Arakelov defined an intersection theory for divisors on arithmetic surfaces by includ-
ing a contribution at infinity, which is computed using certain Green’s functions defined on the
corresponding Riemann surfaces. Arakelov’s theory has been extended to higher dimensions, pri-
marily through the work of H. Gillet, C. Soulé, and G. Faltings. Motivated by the recent work of
B. Edixhoven, which will be explained below, we derive here several analytic relations and estimates
for the Green’s functions used by Arakelov.

More specifically, let X be a compact Riemann surface of genus gX > 1. The canonical volume
form µcan on X is the positive (1, 1)-form obtained by the pull-back of the standard Euclidean
volume form on the Jacobian variety Jac(X) associated to X via the classical Abel–Jacobi map.
The canonical Green’s function gcan(z,w), also written as gcan,X(z,w), is the function of z,w ∈ X,
which is uniquely characterized by the differential equation

dzd
c
zgcan(z,w) + δw(z) = µcan(z) (z,w ∈ X),

where δw(z) is the usual Dirac delta distribution, and the normalization condition∫
X

gcan(z,w)µcan(z) = 0 (w ∈ X).

The fundamental properties of the canonical Green’s function, such as existence and symmetry,
follow from general functional analysis. By identifying the points z,w ∈ X with their pre-images
in the universal cover, which we take to be the hyperbolic upper half-plane H, we have that the
function

gcan(z,w) + log |z − w|2
is bounded and continuous as z approaches w.
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The results we present here involve a development of bounds for the canonical Green’s function
after removing its logarithmic singularity. In effect, we obtain three types of bound. First, we study
the setting of a fixed compact hyperbolic Riemann surface X, ultimately deriving a sup-norm
bound involving quantities associated to the hyperbolic spectral theory and hyperbolic geometry
on X. Second, we investigate these bounds in the relative situation, when X is a finite-degree
cover of a fixed compact hyperbolic Riemann surface. Third, we consider these bounds for families
of hyperbolic modular curves, meaning the sequences of modular curves {X0(N)}, {X1(N)}, or
{X(N)} of genus bigger than one.

To prove our results, we develop the bounds by first deriving bounds for the difference between
the canonical Green’s function and the hyperbolic Green’s function, whose definition parallels that
of the canonical Green’s function when replacing the canonical (1, 1)-form by the appropriately
scaled hyperbolic (1, 1)-form. We then express the difference between the canonical and the hyper-
bolic Green’s functions using various expressions involving the hyperbolic heat kernel (including
special values of Selberg’s zeta function). The remainder of the article is devoted to proving bounds
for hyperbolic heat kernels, from which our main results follow.

1.2 Arithmetic applications

Analytic problems related to Arakelov theory can be interesting both for their own sake and for
potential applications to arithmetic algebraic geometry. Concerning the specific work we undertake
in the present article, we were informed of some analytic problems with immediate arithmetic
implications in current work by Edixhoven, which we now briefly discuss.

Edixhoven has a strategy to compute Galois representations modulo � associated to a fixed
modular form of arbitrary weight, with the goal of devising an algorithm, which has complexity
that is polynomial in �. A typical modular form to consider is ∆, the (up to scale) unique cusp
form of weight 12 associated to the modular group PSL2(Z). In this case, Edixhoven’s strategy
amounts to computing the field of definition of a suitable torsion point of order � on the Jacobian
variety Jac(X1(�)) of the modular curve X1(�). Naturally, such torsion points can be described in
terms of a divisor on X1(�). Since the dimension of Jac(X1(�)) grows quadratically with �, it seems
as if existing methods to compute torsion points, such as with computer algebra systems, will be
unfeasible. Edixhoven’s idea is to numerically approximate the divisor in question with sufficiently
high precision so that the approximation can turn into an exact result. More precisely, in order to
get a polynomial time algorithm, one needs that the precision in the above approximation (that is,
the number of digits with which the numerical computations need to be carried out) is to be at
most polynomial in �.

In Edixhoven’s work, the required precision is roughly equal to the height of the divisor, which
is estimated using Arakelov theory. The arithmetic Riemann–Roch theorem, Noether’s formula, and
estimates for the Faltings height of X1(�) and for norms of theta functions are applied. To complete
this analysis, Edixhoven needs various estimates involving an upper bound for Green’s functions
on X1(�), as a function of �. As an application of our general results, we derive an upper bound
for the Green’s functions on X1(�), after removing its logarithmic singularity. Indeed, our upper
bound is uniform in �, thus showing that the analytic contribution from the Green’s functions in
Edixhoven’s algorithm is an order smaller than required by the algorithm.

In communicating his ideas, Edixhoven informed us that F. Merkl has studied methods,
which yield upper bounds for Green’s functions, that are polynomial in �. Our method of
proof, which builds on previous investigations, notably [JK01, JK04, JK05], provides a sharper
upper bound, which we hope will lead to a better estimate of the complexity of Edixhoven’s
algorithm.
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Bounds on canonical Green’s functions

1.3 Summary of the main results

The hyperbolic Green’s function ghyp(z,w) on X is the function of z,w ∈ X, which satisfies the
differential equation

dzd
c
zghyp(z,w) + δw(z) =

µhyp(z)
volhyp(X)

(z,w ∈ X),

and the normalization condition∫
X

ghyp(z,w)µhyp(z) = 0 (w ∈ X),

where µhyp is the (1, 1)-form associated to the metric with constant negative curvature equal to minus
one giving X the volume volhyp(X). In particular, if z,w ∈ H, the hyperbolic Green’s function on H

is given by

gH(z,w) = −log
(∣∣∣∣z − w

z − w̄

∣∣∣∣
2)

.

Our first main result, Theorem 3.8, expresses the difference gcan(z,w) − ghyp(z,w) in terms of a
function associated to hyperbolic geometry, namely the hyperbolic heat kernel on X. This con-
struction of gcan(z,w) allows for the study of the canonical Green’s function through techniques
of hyperbolic geometry. We then study the identity from Theorem 3.8 and prove bounds for the
hyperbolic Green’s function and the canonical Green’s function on X in terms of small eigenvalues
and corresponding eigenfunctions of the hyperbolic Laplacian on X, as well as other data coming
from hyperbolic geometry, such as the length of the shortest closed geodesic and the injectivity
radius of X. These results are summarized in Theorems 4.5, 4.8, and 4.9.

We then study these bounds for families of compact hyperbolic Riemann surfaces. In general,
let X1 be a finite degree cover of X0, a fixed compact hyperbolic Riemann surface. Let gX1 denote
the genus of X1 and λX1,1 be the smallest non-zero eigenvalue of the hyperbolic Laplacian on X1.
Given a uniformization X1 = ΓX1\H (with ΓX1 a cocompact torsion-free Fuchsian subgroup of the
first kind of PSL2(R)), we shall, by abuse of notation, identify X1 with a choice of a fundamental
domain for X1 in H, and identify points on X1 with their pre-images in H. Given δ > 0, and points
z,w ∈ X1, define the set

SΓX1
(δ; z,w) = {γ ∈ ΓX1 | dH(z, γw) < δ} ;

here dH(·, ·) denotes the hyperbolic distance on H. Let {λX1,n} denote the set of eigenvalues of
the hyperbolic Laplacian, which acts on the space of smooth functions on X1, with associated
orthonormal eigenfunctions {ϕX1,n}. We prove that for any ε > 0, δ > 0, and for all z,w ∈ X1,
we have the bounds

ghyp,X1(z,w) −
∑

γ∈SΓX1
(δ;z,w)

gH(z, γw) −
∑

0<λX1,n�ε

4π
λX1,n

ϕX1,n(z)ϕX1,n(w) = OX0,ε,δ(1),

and

gcan,X1(z,w) − ghyp,X1(z,w) = OX0

(
1

gX1

(
1 +

1
λX1,1

))
;

therefore, by the triangle inequality, we show that

gcan,X1(z,w) −
∑

γ∈SΓX1
(δ;z,w)

gH(z, γw) = OX0,δ

(
1 +

1
λX1,1

)
.

As the notation indicates, all bounds are uniform on X1, and depend solely on the choices of ε, δ,
and the base surface X0. The proofs of these bounds are given in § 5.
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As in [JK05], we extend our analysis to the study of the families of hyperbolic modular curves
{X0(N)}, {X1(N)}, and {X(N)}. In this setting, it was shown in [Bro99] that the smallest non-zero
eigenvalues are uniformly bounded away from zero. Therefore, our results imply, among others, the
estimates

gcan,X1(N)(z,w) − ghyp,X1(N)(z,w) = O(g−1
X1(N)),

and

gcan,X1(N)(z,w) −
∑

γ∈SΓX1(N)
(δ;z,w)

gH(z, γw) = Oδ(1),

with similar bounds for the other families of modular curves {X0(N)} and {X(N)}. Again, as the
notation indicates, the bounds are uniform in N .

1.4 Outline of the paper

The article is organized as follows. In § 2, we establish our notation and discuss background material
and results. In § 3, we derive an explicit, analytic expression relating the canonical Green’s function
to the hyperbolic Green’s function and various other data coming from hyperbolic geometry. For the
most part, the data from hyperbolic geometry that we use come directly from integral expressions
involving the hyperbolic heat kernel, including the special value of the Selberg zeta function, which
was studied in [JK02]. The main formula we derive is stated in Theorem 3.8. In § 4, we bound all
quantities appearing in Theorem 3.8 in terms of fundamental invariants from hyperbolic geometry,
such as the smallest non-zero eigenvalue, the length of the shortest closed geodesic, etc.; a list
summarizing the invariants, which we use, is given in § 2.6. In § 5, we study the behavior of these
invariants in two different settings, namely, a compact Riemann surface X1, which is a finite degree
cover of some fixed compact hyperbolic Riemann surface X0, or a compact Riemann surface X1,
which lies in one of the families of hyperbolic modular surfaces {X0(N)}, {X1(N)}, or {X(N)}.
The analysis of many of the hyperbolic invariants that appear in the present article have also been
studied in detail in [JK05]. The corresponding results of [JK05] are then applied to the bounds
obtained in § 4, thus completing the proofs of the results stated above.

2. Background material

2.1 Hyperbolic and canonical metrics

Let Γ be a Fuchsian subgroup of the first kind of PSL2(R) acting by fractional linear transformations
on the hyperbolic upper half-plane, which we denote by H = {z ∈ C | Im(z) > 0}. We let X be the
quotient space Γ\H and denote by gX the genus of X. In a slight abuse of notation, throughout this
article we identify X with a fundamental domain (say, a Ford domain, bounded by geodesic paths)
and identify points on X with their pre-images in H. We assume that gX > 1 and that Γ has no
elliptic and, apart from the identity, no parabolic elements, that is, X is smooth and compact.

In the following, µ denotes a (smooth) metric on X, that is, µ is a positive (1, 1)-form on X.
We write volµ(X) for the volume of X with respect to µ. In particular, we let µ = µhyp denote the
hyperbolic metric on X, which is compatible with the complex structure of X, and has constant
negative curvature equal to minus one. Locally, we have

µhyp(z) =
i

2
· dz ∧ dz̄

Im(z)2
.

As a shorthand, we write vX for the hyperbolic volume volµhyp
(X); we recall that vX is given by

4π(gX−1). The scaled hyperbolic metric µ = µshyp is simply the rescaled hyperbolic metric µhyp/vX ,
which measures the volume of X to be one.

4
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Bounds on canonical Green’s functions

Let Sk(Γ) denote the C-vector space of cusp forms of weight k with respect to Γ equipped with
the Petersson inner product

〈f, g〉 =
i

2

∫
X

f(z) g(z) Im(z)k · dz ∧ dz̄

Im(z)2
(f, g ∈ Sk(Γ)).

By choosing an orthonormal basis {f1, . . . , fgX
} of S2(Γ) with respect to the Petersson inner product,

the canonical metric µ = µcan of X is given by

µcan(z) =
1

gX
· i

2

gX∑
j=1

|fj(z)|2 dz ∧ dz̄.

We note that the canonical metric measures the volume of X to be one. For the purpose of comparing
the hyperbolic and the canonical metrics, we define

dX = sup
z∈X

∣∣∣∣ µcan(z)
µshyp(z)

∣∣∣∣.
In [JK04], optimal bounds for dX through covers were obtained for arbitrary towers of compact
and non-compact Riemann surfaces; see also [Don96], where the author considered the problem of
towers of compact Riemann surfaces.

2.2 Green’s functions and residual metrics
We denote the Green’s function associated to the metric µ by gµ. It is a function on X × X
characterized by the two properties

dzd
c
zgµ(z,w) + δw(z) =

µ(z)
volµ(X)

,

∫
X

gµ(z,w)µ(z) = 0 (w ∈ X).

Assuming that z, w are points on X, which are sufficiently close, our convention for the Green’s
function is such that the sum gµ(z,w) + log |z − w|2 is bounded as w approaches z.

The Green’s function is an integral kernel that inverts the Laplacian associated to µ and is
orthogonal to the constant functions. More precisely, for any smooth, bounded function f on X,
we have the identity∫

X
gµ(z, ζ)(−dζd

c
ζf(ζ))µ(ζ) = f(z), provided that

∫
X

f(ζ)µ(ζ) = 0.

If µ = µhyp, µ = µshyp, or µ = µcan, we set

gµ = ghyp, gµ = gshyp, gµ = gcan,

respectively. By means of the function Gµ = exp(gµ), we can now define a metric ‖ · ‖µ,res on the
canonical line bundle Ω1

X of X in the following way. For z ∈ X, we set

‖dz‖2
µ,res = lim

w→z
(Gµ(z,w) · |z − w|2).

We call the metric

µres(z) =
i

2
· dz ∧ dz̄

‖dz‖2
µ,res

the residual metric associated to µ. If µ = µhyp, µ = µshyp, or µ = µcan, we set

‖ · ‖µ,res = ‖ · ‖hyp,res, ‖ · ‖µ,res = ‖ · ‖shyp,res, ‖ · ‖µ,res = ‖ · ‖can,res,

µres = µhyp,res, µres = µshyp,res, µres = µcan,res,

5
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respectively. We recall that the Arakelov metric µAr is defined as the residual metric associated to
the canonical metric µcan; the corresponding metric on Ω1

X is denoted by ‖ · ‖Ar. In order to be able
to compare the metrics µcan and µAr, we define the C∞-function φAr on X by the equation

µAr = eφArµhyp. (1)

2.3 Heat kernels and heat traces
The heat kernel KH(t; z,w) on H (t ∈ R>0; z,w ∈ H) is given by the formula

KH(t; z,w) = KH(t; ρ) =
√

2e−t/4

(4πt)3/2

∫ ∞

ρ

ue−u2/4t√
cosh(u) − cosh(ρ)

du, (2)

where ρ = dH(z,w) denotes the hyperbolic distance between z and w. If z = w, the previous formula
can be shown to be equal to

KH(t; z, z) = KH(t; 0) =
1
2π

∫ ∞

0
e−(r2+1/4)t r tanh(πr) dr.

The heat kernel KX(t; z,w) associated to X (t ∈ R>0; z,w ∈ X), respectively the hyperbolic heat
kernel HKX(t; z,w) associated to X (t ∈ R>0; z,w ∈ X) is defined by averaging over the elements
of Γ, respectively the elements of Γ different from the identity, namely

KX(t; z,w) =
∑
γ∈Γ

KH(t; z, γw),

HKX(t; z,w) =
∑
γ∈Γ
γ �=id

KH(t; z, γw),

respectively. The heat kernel KX(t; z,w) admits the following spectral representation. Let {λX,n}
denote the set of eigenvalues of the hyperbolic Laplacian ∆X , which acts on the space of smooth
functions on X with associated orthonormal eigenfunctions {ϕX,n}. Then, for all z,w ∈ X, we have

KX(t; z,w) =
∑

n

ϕX,n(z)ϕX,n(w)e−λX,nt.

The convergence of this series is uniform and absolute (see [Cha84, p. 112]). Recall that the eigen-
functions can be taken to be real-valued, so there is no need for a complex conjugate over one of
the terms.

If z = w, we write KX(t; z) instead of KX(t; z, z) and HKX(t; z) instead of HKX(t; z, z).
The hyperbolic heat trace H Tr KX(t) (t ∈ R>0) is now given by

H Tr KX(t) =
∫

X
HKX(t; z)µhyp(z).

We note that the hyperbolic Green’s function ghyp(z,w) (z,w ∈ X; z �= w) relates in the following
way to the heat kernel

ghyp(z,w) = 4π
∫ ∞

0

(
KX(t; z,w) − 1

vX

)
dt. (3)

The hyperbolic Green’s function on H can be defined using the hyperbolic heat kernel, namely
through the formula

gH(z,w) = 4π
∫ ∞

0
KH(t; z,w) dt.

As stated in the introduction, explicit formulas were given evaluating gH(z,w), namely

gH(z,w) = −log
(∣∣∣∣z − w

z − w̄

∣∣∣∣
2)

,

6
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Bounds on canonical Green’s functions

as well as

gH(z,w) = −log(tanh2(dH(z,w)/2))

with dH(z,w) denoting the hyperbolic distance from z to w (see [Hej83, p. 31], and [Bea95, p. 130]).
Both identities will play a role in our work.

2.4 Selberg’s zeta function
Let H(Γ) denote a complete set of representatives of non-conjugate, primitive, hyperbolic elements
in Γ. Denote by �γ the hyperbolic length of the closed geodesic determined by γ ∈ H(Γ) on X; it is
well known that the equality

|tr(γ)| = 2cosh(�γ/2)

holds. For s ∈ C, Re(s) > 1, the Selberg zeta function ZX(s) associated to X is defined via the
Euler product expansion

ZX(s) =
∏

γ∈H(Γ)

Zγ(s), where Zγ(s) =
∞∏

n=0

(1 − e−(s+n)�γ ).

The Selberg zeta function ZX(s) is known to have a meromorphic continuation to all of C and
satisfies a functional equation. As in [JK01], we define the quantity

cX = lim
s→1

(
Z ′

X

ZX
(s) − 1

s − 1

)
,

which expresses cX in terms of the hyperbolic heat kernel. From [JK01, Lemma 4.2], we recall the
formula

cX = 1 +
∫ ∞

0
(H Tr KX(t) − 1) dt =

∫ ∞

0
(H Tr KX(t) − 1 + e−t) dt. (4)

The quantity cX was studied in detail in [JK01]. Specifically, upper and lower bounds for cX

were obtained for a fixed hyperbolic Riemann surface X, and these bounds were also studied for
surfaces X1, which are finite-degree covers of a fixed hyperbolic Riemann surface X0. The analysis
of cX was extended to the sequence {X0(N)} of hyperbolic modular surfaces in [JK05, § 5].

2.5 Heat kernel bounds
Directly from the integral formula (2) for KH(t; ρ), one can prove the following two bounds. First,
for any 0 < t0 < 1, there is a constant c0 > 0 such that for 0 < t < t0, we have the upper bound

KH(t; ρ) � c0

4πt
e−ρ2/(4t)

for all ρ � 0. Second, there is a constant c∞ > 0 such that, if t � t0, then

KH(t; ρ) � c∞e−t/4

for all ρ � 0. Continuing, one also has the bound

KX(t; z,w) � 1
2(KX(t; z) + KX(t;w)),

which holds for all t > 0 and all z,w ∈ X. To prove this inequality, observe that for each n, we have

ϕX,n(z)ϕX,n(w)e−λX,nt � 1
2(ϕ2

X,n(z)e−λX,nt + ϕ2
X,n(w)e−λX,nt),

from which the stated bound now follows by summing over all n.
More generally, one can use hyperbolic geometry in order to prove an upper bound for

KX(t; z,w). For this, we follow [JL95, Lemma 2.3], in particular displayed formula (2.2) on p. 796,
which we now recall in detail. Fix 0 < t0 < 1, and choose δ0 sufficiently large such that KH(t; ρ)

7
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is a monotone decreasing function of ρ for ρ > δ0 and all 0 < t < t0 (as with the above bounds for
KH(t; ρ), the verification of the existence of t0 and δ0 follows from the integral formula for KH(t; ρ)).
Let rX be any number less than or equal to the injectivity radius of X, meaning

rX � inf{dH(z, γz) | γ ∈ Γ, γ �= id, z ∈ X}.
Since X is compact, one can choose rX > 0. For δ > 0 and fixed z,w ∈ X, we define the set

SΓ(δ; z,w) = {γ ∈ Γ | dH(z, γw) < δ}.
Then, as stated in [JL95, formula (2.2), p. 796], we have the bounds

∑
γ∈SΓ(δ;z,w)

KH(t; dH(z, γw)) � KX(t; z,w)

and, for all 0 < t < t0 and δ > δ0, we have

KX(t; z,w) �
∑

γ∈SΓ(δ;z,w)

KH(t; dH(z, γw)) +
sinh(rX) sinh(δ)

sinh2(rX/2)
· KH(t; δ)

+
1

sinh2(rX/2)

∫ ∞

δ−4rX

KH(t; ρ) sinh(ρ + 2rX) dρ.

The arguments proving these bounds are elementary and we refer the reader to [JL95] for details.
We note here that the statement above is obtained through a slight refinement of that given in
[JL95], coming from observing that the various hyperbolic discs whose volumes are used to estimate
the number of lattice points can be taken to be centered at an orbit point of w. As a result, certain
estimates above involve rX rather than 2rX , as in [JL95]. This refinement is not critical for the
analysis here; nonetheless, for the sake of precision, we do quote and then employ this refined
result.

2.6 Certain hyperbolic-geometric invariants

For the convenience of the reader, we list here certain hyperbolic invariants that appear in our
estimates.

The constants c0, c∞, t0, and δ0 appear in the upper bounds for KH(t; ρ) and were defined
in § 2.5. The constant rX is any number less than or equal to the injectivity radius of X, and we
take δX to be any number such that δX > max{δ0, 4rX + 5} > 0. Given 0 < t0 < 1, we define

CHK
X = max

z∈X
KX(t0; z),

which is finite, since X is compact. Following the arguments in [JL95], it can be shown that

sup
z,w∈X

#SΓ(δ; z,w) � sinh(δ + rX)
sinh(rX)

,

where the set SΓ(δ; z,w) was defined in § 2.5. The smallest non-zero eigenvalue of the hyperbolic
Laplacian on X is denoted by λX,1 and the length of the shortest non-zero closed geodesic on X is
denoted by �X,0. The constant cX is the constant term in the Laurant expansion of the logarithmic
derivative of the Selberg zeta function ZX(s) at s = 1, as defined in § 2.4. Finally, the sup-norm
between the canonical and scaled hyperbolic volume forms is defined by

dX = sup
z∈X

∣∣∣∣ µcan(z)
µshyp(z)

∣∣∣∣.
8
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Bounds on canonical Green’s functions

3. Expressing canonical Green’s function using hyperbolic data

In this section we obtain a closed-form expression for the canonical Green’s function in terms of
hyperbolic geometry. The main result of this section, Theorem 3.8, expresses gcan in terms of the
hyperbolic Green’s function ghyp and analytic functions derived from the hyperbolic heat kernel.
The steps in our proof are as follows. First, we derive a general expression relating gcan to ghyp in
terms of various integrals involving µcan; see Lemma 3.1. Next, we prove an explicit relation between
the canonical metric µcan and the hyperbolic metric µhyp in terms of the hyperbolic heat kernel;
see Theorem 3.4. We then substitute Theorem 3.4 into Lemma 3.1 in order to complete the proof
of Theorem 3.8.

Lemma 3.1. With the above notation, we have, for all z,w ∈ X, the formula

ghyp(z,w) − gcan(z,w) =
∫

X
ghyp(z, ζ)µcan(ζ) +

∫
X

ghyp(w, ζ)µcan(ζ)

−
∫

X

∫
X

ghyp(ξ, ζ)µcan(ζ)µcan(ξ).

Proof. Let FL(z,w) (respectively FR(z,w)) denote the left-hand side (respectively right-hand side)
of the stated identity. Using the characterizing properties of the Green’s functions, one can show
directly that we have, for fixed w ∈ X,

dzd
c
zFL(z,w) = dzd

c
zFR(z,w) = µshyp(z) − µcan(z),

and ∫
X

FL(z,w)µcan(z) =
∫

X
FR(z,w)µcan(z) =

∫
X

ghyp(w, ζ)µcan(ζ).

Consequently, FL(z,w) = FR(z,w), again for fixed w. However, it is obvious that FL and FR are
symmetric in z and w. This completes the proof of the lemma.

Proposition 3.2. With the above notation, we have, for all z ∈ X, the formula

gXµcan(z) = µshyp(z) + 1
2c1(Ω1

X , ‖ · ‖hyp,res)(z) ;

here Ω1
X denotes the canonical line bundle on X.

Proof. Let us rewrite the identity in Lemma 3.1 as

ghyp(z,w) − gcan(z,w) = φ(z) + φ(w), (5)

where

φ(z) =
∫

X
ghyp(z, ζ)µcan(ζ) − 1

2

∫
X

∫
X

ghyp(ξ, ζ)µcan(ζ)µcan(ξ).

Taking dzd
c
z in relation (5), we get the equation

µshyp(z) − µcan(z) = dzdc
zφ(z). (6)

On the other hand, we have by definition

log ‖dz‖2
hyp,res = lim

w→z
(ghyp(z,w) + log |z − w|2),

log ‖dz‖2
can,res = lim

w→z
(gcan(z,w) + log |z − w|2).

From this we deduce, again using (5),

log ‖dz‖2
hyp,res − log‖dz‖2

can,res = lim
w→z

(ghyp(z,w) − gcan(z,w)) = 2φ(z). (7)

Now, taking −dzd
c
z of (7) yields

c1(Ω1
X , ‖ · ‖hyp,res)(z) − c1(Ω1

X , ‖ · ‖can,res)(z) = −2dzd
c
zφ(z). (8)

9
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Combining (6) and (8) leads to

2(µshyp(z) − µcan(z)) = c1(Ω1
X , ‖ · ‖can,res)(z) − c1(Ω1

X , ‖ · ‖hyp,res)(z). (9)

Recalling

c1(Ω1
X , ‖ · ‖can,res)(z) = (2gX − 2)µcan(z),

from (9) we derive

µshyp(z) − µcan(z) =
2gX − 2

2
µcan(z) − 1

2
c1(Ω1

X , ‖ · ‖hyp,res)(z),

which proves the proposition.

Proposition 3.3. With the above notation, we have the following formula for the first Chern form
of Ω1

X with respect to ‖ · ‖hyp,res

c1(Ω1
X , ‖ · ‖hyp,res)(z) =

1
2π

· µhyp(z) +
(∫ ∞

0
∆XKX(t; z) dt

)
µhyp(z).

Proof. By our definitions, for z ∈ X we have

c1(Ω1
X , ‖ · ‖hyp,res)(z) = −dzd

c
z log ‖dz‖2

hyp,res = −dzd
c
z lim

w→z
(ghyp(z,w) + log |z − w|2)

= −dzd
c
z lim

w→z

(
4π

∫ ∞

0

(
KX(t; z,w) − 1

vX

)
dt + log |z − w|2

)

= −dzd
c
z lim

w→z

(
4π

∫ ∞

0
KH(t; z,w) dt + log |z − w|2

)

− dzd
c
z lim

w→z

(
4π

∫ ∞

0

( ∑
γ∈Γ

γ �=id

KH(t; z, γw) − 1
vX

)
dt

)
.

Using the formula for the Green’s function gH(z,w) on H, for the first summand in the latter sum
we obtain

A = −dzd
c
z lim

w→z

(
4π

∫ ∞

0
KH(t; z,w) dt + log |z − w|2

)

= −dzd
c
z lim

w→z
(gH(z,w) + log |z − w|2)

= −dzd
c
z log |z − z̄|2 = − 2i

2π
∂z ∂̄z log(z − z̄)

=
i

π
∂z

dz̄

z − z̄
= − i

π
· dz ∧ dz̄

(z − z̄)2

= − i

π
· dz ∧ dz̄

(2i Im(z))2
=

1
2π

· µhyp(z).

For the second summand we obtain

B = −dzd
c
z lim

w→z

(
4π

∫ ∞

0

( ∑
γ∈Γ
γ �=id

KH(t; z, γw) − 1
vX

)
dt

)

= −4πdzd
c
z

∫ ∞

0

( ∑
γ∈Γ
γ �=id

KH(t; z, γz) − 1
vX

)
dt.

10
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Bounds on canonical Green’s functions

Since the latter integral converges absolutely, as does the integral of derivatives of the integrand,
we are allowed to interchange differentiation and integration; this gives

B = −4π
∫ ∞

0
dzd

c
z

( ∑
γ∈Γ
γ �=id

KH(t; z, γz) − 1
vX

)
dt

= −4π
∫ ∞

0

∑
γ∈Γ
γ �=id

dzd
c
z KH(t; z, γz) dt.

The claimed formula then follows, since KH(t; z, z) is independent of z, and recalling the identity

−4πdzd
c
zf(z) = (∆Xf(z))µhyp(z),

for any smooth function f on X.

Theorem 3.4. With the above notation, we have, for all z ∈ X, the formula

µcan(z) = µshyp(z) +
1

2gX

(∫ ∞

0
∆XKX(t; z) dt

)
µhyp(z).

Proof. We simply have to combine Propositions 3.2 and 3.3, and to use that
1

gX
+

vX

4πgX
= 1.

Lemma 3.5. For all z ∈ X, let H(z) be defined by

H(z) =
∫ ∞

0

(
HKX(t; z) − 1

vX

)
dt − cX − 1

vX
.

Then, H(z) is uniquely characterized by satisfying the integral formula∫
X

H(z)µhyp(z) = 0

and the differential equation

∆XH(z) =
∫ ∞

0
∆XKX(t; z) dt.

Proof. Concerning the integral equation, note that, by interchanging the order of integration,
we have ∫

X
H(z)µhyp(z) =

∫
X

(∫ ∞

0

(
HKX(t; z) − 1

vX

)
dt − cX − 1

vX

)
µhyp(z)

=
∫ ∞

0
(H Tr KX(t) − 1) dt − (cX − 1) = 0,

where the last equality follows from formula (4), given in § 2.4. As for the differential equation,
note that for any z ∈ X, we have

HKX(t; z) = KX(t; z) − KH(t, 0).

Since KH(t, 0) and (cX − 1)/vX are annihilated by ∆X , the result follows.

Lemma 3.6. With the above notation, we have, for all z ∈ X, the formula∫
X

ghyp(z, ζ)µcan(ζ) =
2π
gX

H(z).

11
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Proof. Using Theorem 3.4, we have∫
X

ghyp(z, ζ)µcan(ζ) =
∫

X
ghyp(z, ζ)

(
µshyp(ζ) +

1
2gX

(∫ ∞

0
∆XKX(t; ζ) dt

)
µhyp(ζ)

)

=
1

2gX

∫
X

ghyp(z, ζ)
( ∫ ∞

0
∆XKX(t; ζ) dt

)
µhyp(ζ)

=
1

2gX

∫
X

ghyp(z, ζ)∆XH(ζ)µhyp(ζ),

where the last equality follows from Lemma 3.5. Using the integral formula in Lemma 3.5, the
assertion is proved by using that ghyp inverts the operator −ddc on the space of functions whose
integral is zero.

Lemma 3.7. With the above notation, we have the formula∫
X

∫
X

ghyp(ξ, ζ)µcan(ζ)µcan(ξ) =
π

g2
X

∫
X

H(ξ)∆XH(ξ)µhyp(ξ).

Proof. Using Lemma 3.6, we have∫
X

∫
X

ghyp(ξ, ζ)µcan(ζ)µcan(ξ) =
2π
gX

∫
X

H(ξ)µcan(ξ).

We now employ Theorem 3.4, which gives∫
X

H(ξ)µcan(ξ) =
∫

X
H(ξ)

(
µshyp(ξ) +

1
2gX

(∫ ∞

0
∆XKX(t; ξ) dt

)
µhyp(ξ)

)

=
1

2gX

∫
X

H(ξ)
(∫ ∞

0
∆XKX(t; ξ) dt

)
µhyp(ξ),

where we have used the integral equation from Lemma 3.5 to obtain the last equality. The result
follows by using the differential equation from Lemma 3.5.

Theorem 3.8. With the above notation, we have the formula

gcan(z,w) − ghyp(z,w) = φX(z) + φX(w),

where

φX(z) =
2π
gX

H(z) − π

2g2
X

∫
X

H(ξ)∆XH(ξ)µhyp(ξ).

Proof. The proof is obtained by combining Lemmas 3.1, 3.6 and 3.7.

Remark 3.9. Recall from § 2.3 that the hyperbolic Green’s function ghyp is simply expressed in terms
of the hyperbolic heat kernel. Together with the definition of H(z) given in Lemma 3.5, the main
result in Theorem 3.8 then states a closed form expression for the canonical Green’s function gcan

using the hyperbolic heat kernel. By comparison, note that the analysis in [Jor90] relied on an
evaluation of the canonical Green’s function in terms of the classical Riemann theta function; see
[Jor90], in particular Proposition 2.4 and the preceding computations. Consequently, we now have
a complete, closed-form expression for the Riemann theta function in terms of the hyperbolic heat
kernel. A potentially fascinating study would be to explore this relation further, either from the
point of view of obtaining results in hyperbolic geometry from the algebraic geometry of the theta
function, or conversely.

4. Bounds of various hyperbolic data

We now work from Theorem 3.8 and obtain bounds for the canonical Green’s function for a fixed
surface X. First, we study bounds for the hyperbolic Green’s function, which we derive using the heat

12
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Bounds on canonical Green’s functions

kernel bound stated in § 2.5; these bounds are given in Theorem 4.5. Next, we estimate the function
φX in Theorem 3.8; these estimates are given in Corollary 4.6 and Proposition 4.7. After this, the
bounds we seek for the canonical Green’s function are immediate and are stated in Theorems 4.8
and 4.9. As we will see in the next section, the explicit nature of these bounds are such that we
can easily determine the behavior of the estimates through covers and for sequences of hyperbolic
modular curves.

Lemma 4.1. Let t0 and CHK
X be as in §§ 2.5 and 2.6. For any ε > 0 and z,w ∈ X, we then have the

following estimate involving the eigenfunctions ϕX,n of the hyperbolic Laplacian∑
0�λX,n<ε

|ϕX,n(z)ϕX,n(w)| � CHK
X · eεt0 .

Proof. First observe that for each n, we have

|ϕX,n(z)ϕX,n(w)| � 1
2(ϕ2

X,n(z) + ϕ2
X,n(w));

hence, it suffices to prove the claim when z = w. For this, we note that e−λX,nt0 · eεt0 � 1, provided
that λX,n < ε. Therefore, we find∑

0�λX,n<ε

ϕ2
X,n(z) �

∑
0�λX,n<ε

ϕ2
X,n(z)e−λX,nt0 · eεt0 � eεt0 · KX(t0; z) � CHK

X · eεt0 ,

which proves the claim.

Lemma 4.2. Let c0, c∞, t0, rX , δX , and CHK
X be as in §§ 2.5 and 2.6. For any δ � δX , ε > 0, and

z,w ∈ X, let

Kε,δ
X (t; z,w) = KX(t; z,w) −

∑
0�λX,n<ε

ϕX,n(z)ϕX,n(w)e−λX,nt −
∑

γ∈SΓ(δ;z,w)

KH(t; dH(z, γw)).

Then, we have the following bounds:

(a) if 0 < t < t0, then

|Kε,δ
X (t; z,w)| � CHK

X · eεt0 +
c0 sinh(rX) sinh(δ)
8δ2 sinh2(rX/2)

+
c0e

2rX

2π sinh2(rX/2)
;

(b) if t � t0, then

|Kε,δ
X (t; z,w)| � CHK

X · e−ε(t−t0) +
c∞ sinh(δ + rX)

sinh(rX)
e−t/4.

Proof. To prove part (a), we first use the triangle inequality to write

|Kε,δ
X (t; z,w)| �

∑
0�λX,n<ε

|ϕX,n(z)ϕX,n(w)|e−λX,nt +
∑

γ /∈SΓ(δ;z,w)

KH(t; dH(z, γw)).

By Lemma 4.1, the first summand is bounded by CHK
X ·eεt0 . As for the second summand, we proceed

by using the heat kernel estimates from § 2.5, namely the bounds
∑

γ /∈SΓ(δ;z,w)

KH(t; dH(z, γw)) � sinh(rX) sinh(δ)
sinh2(rX/2)

· KH(t; δ)

+
1

sinh2(rX/2)

∫ ∞

δ−4rX

KH(t; ρ) sinh(ρ + 2rX) dρ.

Trivially, the lower bound for the sum in question is zero, since each term in the series is positive.
Since 0 < t < t0 < 1, we can use the bound

KH(t; δ) � c0

4πt
e−δ2/(4t),

13
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which gives
sinh(rX) sinh(δ)

sinh2(rX/2)
· KH(t; δ) � c0 sinh(rX) sinh(δ)

sinh2(rX/2)
· 1
4πt

e−δ2/(4t).

It is elementary to compute that the maximum of e−a/t/t, as a function of t > 0 and fixed a > 0,
occurs when t = a, yielding the maximum value of e−1/a. Therefore, taking a = δ2/4, we get

c0 sinh(rX) sinh(δ)
sinh2(rX/2)

· 1
4πt

e−δ2/(4t) � c0 sinh(rX) sinh(δ)
sinh2(rX/2)

· 1
πδ2

e−1 � c0 sinh(rX) sinh(δ)
8δ2 sinh2(rX/2)

,

using that πe > 8; thus, we have computed the second term in the stated upper bound. For the last
term, we use the stated upper bound for KH(t; ρ) together with the trivial estimate sinh(x) � ex/2
in order to write

1
sinh2(rX/2)

∫ ∞

δ−4rX

KH(t; ρ) sinh(ρ + 2rX) dρ � c0e
2rX

8πt · sinh2(rX/2)

∫ ∞

δ−4rX

e−ρ2/(4t)+ρ dρ.

Over the specified limits of integration, we have that ρ2 � ρ(δ − 4rX), so then

e−ρ2/(4t)+ρ � e−ρ(δ−4rX )/(4t)+ρ = e−ρ(δ−4rX−4t)/(4t).

By assumption, δ � δX > 4rX + 5, so then for 0 < t < t0 < 1, we have that δ − 4rX − 4t > 1,
hence the exponential functions e−ρ2/(4t)+ρ are integrable for all 0 < t < t0 near infinity. With this,
we then have∫ ∞

δ−4rX

e−ρ2/(4t)+ρ dρ �
∫ ∞

δ−4rX

e−ρ(δ−4rX−4t)/(4t) dρ =
4t

δ − 4rX − 4t
e−(δ−4rX )(δ−4rX−4t)/(4t).

Since δ − 4rX − 4t > 1, we have δ − 4rX > 1, so then

4t
δ − 4rX − 4t

e−(δ−4rX )(δ−4rX−4t)/(4t) � 4t · e−(δ−4rX )(δ−4rX−4t)/(4t) � 4t.

Summing up, we find

1
sinh2(rX/2)

∫ ∞

δ−4rX

KH(t; ρ) sinh(ρ + 2rX) dρ � c0e
2rX

2π sinh2(rX/2)
,

which completes the proof of part (a).
We now prove part (b). To begin, we use the spectral decomposition of the heat kernel and the

triangle inequality to get

|Kε,δ
X (t; z,w)| �

∑
λX,n�ε

|ϕX,n(z)ϕX,n(w)|e−λX,nt +
∑

γ∈SΓ(δ;z,w)

KH(t; dH(z, γw)).

From § 2.6, we then have
∑

γ∈SΓ(δ;z,w)

KH(t; dH(z, γw)) � #SΓ(δ; z,w) · sup
η∈[0,δ]

KH(t; η) � c∞ sinh(δ + rX)
sinh(rX)

e−t/4,

which yields one of the terms in the stated upper bound. For the other term, we note that
∑

λX,n�ε

|ϕX,n(z)ϕX,n(w)|e−λX,nt � 1
2

( ∑
λX,n�ε

ϕ2
X,n(z)e−λX,nt +

∑
λX,n�ε

ϕ2
X,n(w)e−λX,nt

)
,

so it suffices to prove that ∑
λX,n�ε

ϕ2
X,n(z)e−λX,nt � CHK

X · e−ε(t−t0).

14
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Bounds on canonical Green’s functions

For this, we consider the function

h(t; z) = eεt ·
∑

λX,n�ε

ϕ2
X,n(z)e−λX,nt.

For fixed z ∈ X, the function h(t; z) is monotone decreasing in t for all t > 0. In particular, we then
have

h(t; z) � h(t0; z) = eεt0 ·
∑

λX,n�ε

ϕ2
X,n(z)e−λX,nt0 � eεt0 · KX(t0; z) � CHK

X · eεt0 .

Therefore, we end up with

0 �
∑

λX,n�ε

ϕ2
X,n(z)e−λX,nt = e−εt · h(t; z) � e−εt · CHK

X · eεt0 = CHK
X · e−ε(t−t0).

With all this, part (b) is proved.

Remark 4.3. If required, the estimates in Lemma 4.2 could be enhanced to reflect the role played
by δ. For example, the estimates for 0 < t < t0 can be easily improved so that the upper bound
approaches zero as δ increases. However, rather than weigh down the above estimates any further,
we choose to underplay the role of δ solely because further bounds are not needed in the present
article.

Lemma 4.4. For any z,w ∈ H with dH(z,w) ∈ [a, b], we have the estimate

|gH(z,w)| � max{|log(tanh2(a/2))|, |log(tanh2(b/2))|}.

Proof. From [Bea95, p. 130], we have

gH(z,w) = −log(tanh2(dH(z,w)/2)).

The function tanh(u) is monotone increasing for u > 0, so its maximum and minimum for u ∈ [a, b]
occur at the boundary, from which the lemma follows.

Theorem 4.5. Let c0, c∞, t0, rX , δX , and CHK
X be as in §§ 2.5 and 2.6. For any δ > 0, ε > 0, and

z,w ∈ X, we then have the estimate∣∣∣∣ghyp(z,w) −
∑

γ∈SΓ(δ;z,w)

gH(z, γw) −
∑

0<λX,n<ε

4π
λX,n

ϕX,n(z)ϕX,n(w)
∣∣∣∣ � BX,ε,δ,

where

BX,ε,δ =




4π
(

CHK
X · eεt0 +

c0 sinh(rX) sinh(δ)
8δ2 sinh2(rX/2)

+
c0e

2rX

2π sinh2(rX/2)
+

4c∞ sinh(δ + rX)
sinh(rX)

+
CHK

X

ε

)
,

if δ > δX ,

4π
(

CHK
X · eεt0 +

c0 sinh(rX) sinh(δX)
8δ2

X sinh2(rX/2)
+

c0e
2rX

2π sinh2(rX/2)
+

4c∞ sinh(δX + rX)
sinh(rX)

+
CHK

X

ε

)

+
sinh(δX + rX)

sinh(rX)
max{|log(tanh2(δ/2))|, |log(tanh2(δX/2))|}, if δ � δX .

Proof. By the definition of Kε,δ
X (t; z,w) given in Lemma 4.2, we have

ghyp(z,w) −
∑

0<λX,n<ε

4π
λX,n

ϕX,n(z)ϕX,n(w) −
∑

γ∈SΓ(δ;z,w)

gH(z, γw) = 4π
∫ ∞

0
Kε,δ

X (t; z,w) dt.

15
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J. Jorgenson and J. Kramer

If δ > δX , the result immediately follows from integrating the bounds from Lemma 4.2, taking into
account the decomposition∫ ∞

0
|Kε,δ

X (t; z,w)| dt =
∫ t0

0
|Kε,δ

X (t; z,w)| dt +
∫ ∞

t0

|Kε,δ
X (t; z,w)| dt.

On the other hand, if δ � δX , we simply write

Kε,δ
X (t; z,w) = Kε,δX

X (t; z,w) +
∑

γ∈SΓ(δX ;z,w)\SΓ(δ;z,w)

KH(t; dH(z, γw)).

Then, taking absolute values and using the triangle inequality, the integral over |Kε,δX
X (t; z,w)| is

estimated as in the previous case using Lemma 4.2, but with δ replaced by δX , while the remaining
sum is estimated using Lemma 4.3 together with the bound

#(SΓ(δX ; z,w) \ SΓ(δ; z,w)) � #SΓ(δX ; z,w) � sinh(δX + rX)
sinh(rX)

.

The proof of the theorem is now complete.

Corollary 4.6. Let λX,1 and �X,0 be as in § 2.6, and put

F (z) =
∫ ∞

0

(
HKX(t; z) − 1

vX

)
dt (z ∈ X).

For any ε ∈ (0, λX,1) and δ ∈ (0, �X,0), we then have the estimate

sup
z∈X

|F (z)| � BX,ε,δ

4π
,

where BX,ε,δ is as in Theorem 4.5.

Proof. The result follows immediately from the argument given in the proof of Theorem 4.5, taking
into account that for the stated choices of ε and δ, we have

HKX(t; z) − 1
vX

= Kε,δ
X (t; z, z).

Proposition 4.7. Let λX,1 and dX be as in § 2.6, and H(z) as in Lemma 3.5. For any Riemann
surface X of genus gX > 1, we then have the estimate

0 � π

2g2
X

∫
X

H(z)∆XH(z)µhyp(z) � π(dX + 1)2vX

2g2
XλX,1

.

Proof. With H(z) as in Lemma 3.5, we have as in Corollary 4.6

F (z) =
∫ ∞

0

(
HKX(t; z) − 1

vX

)
dt = H(z) +

cX − 1
vX

.

It is elementary to show that∫
X

H(z)∆XH(z)µhyp(z) =
∫

X
F (z)∆XF (z)µhyp(z),

since

∆XF (z) = ∆XH(z) and
∫

X
∆XF (z)µhyp(z) = 0.

Therefore, it suffices to prove that

0 �
∫

X
F (z)∆XF (z)µhyp(z) � (dX + 1)2vX

λX,1
,

which is precisely the statement from [JK05, Proposition 4.1], which we refer to for further details.

16
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Bounds on canonical Green’s functions

Theorem 4.8. Let λX,1, �X,0, cX , and dX be as in § 2.6. For any ε ∈ (0, λX,1), δ ∈ (0, �X,0), and
z,w ∈ X, we then have the estimate

|gcan(z,w) − ghyp(z,w)| � BX,ε,δ

gX
+

4π|cX − 1|
gXvX

+
π(dX + 1)2vX

g2
XλX,1

,

where BX,ε,δ is as in Theorem 4.5.

Proof. By combining Theorem 3.8 and Proposition 4.7, we get

|gcan(z,w) − ghyp(z,w)| � 4π
gX

sup
z∈X

|H(z)| + π(dX + 1)2vX

g2
XλX,1

.

By the definition of H(z) and F (z), we now derive from Corollary 4.6

sup
z∈X

|H(z)| � sup
z∈X

|F (z)| + |cX − 1|
vX

� BX,ε,δ

4π
+

|cX − 1|
vX

.

By combining the above estimates, the theorem is proved.

Theorem 4.9. Let λX,1, �X,0, cX , and dX be as in § 2.6. For any ε ∈ (0, λX,1), δ ∈ (0, �X,0), and
z,w ∈ X, we then have the estimate∣∣∣∣gcan(z,w) −

∑
γ∈SΓ(δ;z,w)

gH(z, γw)
∣∣∣∣ � AX,ε,δ,

where

AX,ε,δ = BX,ε,δ +
BX,ε,δ

gX
+

4π|cX − 1|
gXvX

+
π(dX + 1)2vX

g2
XλX,1

with BX,ε,δ as in Theorem 4.5.

Proof. Since∣∣∣∣gcan(z,w) −
∑

γ∈SΓ(δ;z,w)

gH(z, γw)
∣∣∣∣ � |gcan(z,w) − ghyp(z,w)|

+
∣∣∣∣ghyp(z,w) −

∑
γ∈SΓ(δ;z,w)

gH(z, γw)
∣∣∣∣,

the claim follows immediately by combining the bounds in Theorems 4.5 and 4.8.

Remark 4.10. Note that Theorem 4.5 follows from elementary considerations in hyperbolic
geometry. In order to prove Theorem 4.8, we needed the representation of the canonical Green’s
function in terms of the hyperbolic Green’s function, which we proved in Theorem 3.8. All quantities
from hyperbolic geometry that appear in the definition for AX,ε,δ are well-known invariants except
for cX . However, it has been recognized for some time that either cX or Z ′

X(1) are global hyperbolic
invariants, which determine the complexity of the Riemann surface X.

5. Uniform bounds for families of Riemann surfaces

In this section, we study the upper bounds obtained in Theorems 4.5, 4.8, and 4.9 for certain
sequences of compact Riemann surfaces. For the purpose of notational convenience, we use the
following definition.

Definition 5.1. Let {XN}, indexed by N ∈ N ⊆ N, be a sequence of compact Riemann surfaces
of genus gXN

> 1 equipped with the hyperbolic metric µhyp. We say that the sequence is admissible,
if it is of one of the following two types:

17
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J. Jorgenson and J. Kramer

(i) N = N, and for each N ∈ N , the compact Riemann surface XN+1 is a finite degree cover of
XN ;

(ii) the sequence is the subsequence of one of the families of modular curves {X0(N)}, {X1(N)},
or {X(N)} consisting of those modular curves having genus bigger than one.

Denote by p0 ∈ N the minimal element in case (i), that is, p0 = 0, and the smallest prime in N in
case (ii).

Remark 5.2. In this section, we study the bounds stated in Theorems 4.5, 4.8, and 4.9 for admissible
sequences of compact Riemann surfaces. The purpose is to determine the extent to which the derived
bounds are uniform for all elements in the admissible sequence. We denote any bound by Op0 , which
signifies an implied constant being universal for all Riemann surfaces in the admissible sequence
{XN}N∈N under consideration. Similar notation is used to denote constants, say c(p0), whose
dependence is universal for all elements in the admissible sequence.

Lemma 5.3. Let {XN}N∈N be an admissible sequence of compact Riemann surfaces. Then, the
hyperbolic invariants defined in § 2.6 satisfy the following bounds:

(a) there is a constant C1 = C1(p0) > 0 such that for all N ∈ N , we have �XN ,0 � C1;

(b) there is a constant C2 = C2(p0) > 0 such that for all N ∈ N , we can take rXN
= C2;

(c) there is a constant C3 = C3(p0) > 0 such that for all N ∈ N , we have dXN
� C3;

(d) there is a constant C4 = C4(p0) > 0 such that for all N ∈ N , we have CHK
XN

� C4;
(e) there is a constant C5 = C5(p0) > 0 such that for all N ∈ N , we have cXN

� C5 · gXN
/λXN ,1.

Proof. Let us first prove the results for an admissible sequence of compact Riemann surfaces of
type (i) and then consider the case of an admissible sequence of type (ii), that is, the sequences
of modular curves. In order to prove the lemma for an admissible sequence of compact Riemann
surfaces of type (i), we have to consider the pair of compact Riemann surfaces XN (N ∈ N) and X0,
where XN is a finite degree cover of X0.

By taking C1 = �X0,0, part (a) follows from the observation that �XN ,0 � �X0,0. Since the
only requirement on rXN

is that rXN
∈ (0, �XN ,0), part (b) follows from part (a) by choosing, for

example, C2 = C1/2. The bound in part (c) is stated as the main theorem in [Don96] (see also
[JK04]). For part (d), we argue as follows. As usual, we have XN = ΓN\H and X0 = Γ0\H
for suitable subgroups ΓN and Γ0 in PSL2(R). Since ΓN is a subgroup of Γ0, we have the triv-
ial bound KXN

(t; z) � KX0(t; z), from which part (d) follows by taking C4 = CHK
X0

. Finally,
for part (e), we refer to the main results in [JK01], where upper and lower bounds for cXN

are
proved. The upper bound stated here comes from the proof of Theorem 4.7 in [JK01]. In par-
ticular, one has to use the top displayed line on p. 21 of [JK01] with δ = 5 and ε ∈ (0, α),
α = min{7/64, λXN ,1}. From this point on, one then uses the following bounds: the number
of small eigenvalues less than ε is one, namely the zero eigenvalue; the number of elements in
H(ΓN ) of length at most five is bounded by Op0(gXN

), as argued in the proof of Theorem 4.11
in [JK01]; and the constant CXN ,ε defined on p. 20 in [JK01] is bounded by Op0(gXN

), which is
proved by combining the main result in [JK02] and the well-known estimate that the number of
eigenvalues less than 1

4 is O(gXN
), with an implied constant that is universal. We also refer to

[JK05, Proposition 4.2], for a proof of part (e).
Let us now consider the stated assertions for the admissible sequences of modular curves. For this,

complete proofs of parts (a), (c), and (e) are given in [JK05, Proposition 5.3] for the sequence
of modular curves {X0(N)}N∈N , while part (b) again follows directly from part (a). The proof of
all parts of Proposition 5.3 in [JK05] extend with only notational changes to the other sequences
of modular curves {X1(N)}N∈N (respectively {X(N)}N∈N ); one only has to observe that, if p is a

18
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Bounds on canonical Green’s functions

prime in N , then deg(X1(p0p)/X1(p0)) = O(gX1(p)) (respectively deg(X(p0p)/X(p0)) = O(gX(p))),
with implied constants that are universal. The verification of the latter claim follows directly from
known formulas (see, e.g., [Shi94]).

Finally, it remains to prove part (d) for the sequences of modular curves. We give a proof of
part (d) for the sequence of modular curves {X0(N)}N∈N . For a prime p > p0 in N , consider the
finite-degree cover X0(p0p) −→ X0(p). Since

KX0(p)(t; z,w) =
∑

γ∈Γ0(p0p)\Γ0(p)

KX0(p0p)(t; z, γw)

by the existence and uniqueness of heat kernels, we find

KX0(p)(t; z) � 1
2

∑
γ∈Γ0(p0p)\Γ0(p)

(KX0(p0p)(t; z) + KX0(p0p)(t; γz)).

This shows
CHK

X0(p) � (p0 + 1) · CHK
X0(p0p).

Using the trivial inequality CHK
X0(p0p) � CHK

X0(p0)
, we get CHK

X0(p) � (p0 + 1) · CHK
X0(p0) for all primes

p ∈ N . The claimed bound for CHK
X0(N) now follows by the same principle as used in the proof

of Proposition 5.3 in [JK05]. The proof for the other sequences of modular curves {X1(N)}N∈N
(respectively {X(N)}N∈N ) is analogous.

Remark 5.4. The proofs of parts (a), (b), (c), and (d) in Lemma 5.3 are elementary and follow from
standard arguments in hyperbolic geometry and analysis. Part (e) is considerably more involved.
As can be seen from [JK01, JK05], the bound stated in part (e) ultimately reduces to two bounds:
the number of eigenvalues less than 1

4 and the implied constant in the error term of the prime
geodesic theorem. The latter constant is the focus of study in [JK02].

Theorem 5.5. Let {XN}N∈N be an admissible sequence of compact Riemann surfaces. For any
δ > 0, ε > 0 and N ∈ N , we then have the estimate

ghyp,XN
(z,w) −

∑
γ∈SΓN

(δ;z,w)

gH(z, γw) −
∑

0<λXN ,n<ε

4π
λXN ,n

ϕXN ,n(z)ϕXN ,n(w) = Op0,ε,δ(1).

Here, we have written ghyp,XN
(z,w) instead of ghyp(z,w) for the hyperbolic Green’s function on

XN = ΓN\H in order to emphasize the dependence on XN .

Proof. The bound follows directly by combining Theorem 4.5 with parts (b) and (d) of Lemma 5.3,
as well as the definition of δX in terms of rX , e.g., by simply taking δX = max{δ0, 4rX + 5} + 1
(see § 2.6).

Theorem 5.6. Let {XN}N∈N be an admissible sequence of compact Riemann surfaces. For any
N ∈ N , we then have the estimate

gcan,XN
(z,w) − ghyp,XN

(z,w) = Op0

(
1

gXN

(
1 +

1
λXN ,1

))
.

Here, we have written gcan,XN
(z,w) instead of gcan(z,w) for the canonical Green’s function on XN .

Proof. Taking ε < 1, using parts (b) and (d) of Lemma 5.3, and choosing δ = C1/2 with the constant
C1 of Lemma 5.3(a), we derive from the explicit formula for BXN ,ε,δ as stated in Theorem 4.5 that

BXN ,ε,δ = Op0

(
1 +

1
ε

)
.

Now we turn to the bound given in Theorem 4.8. Then, by taking ε = min{1
2 , λXN ,1/2}, and using

parts (c), (e) of Lemma 5.3, the result follows.
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Corollary 5.7. Let {XN}N∈N be an admissible sequence of compact Riemann surfaces. For any
δ > 0 and N ∈ N , we then have the estimate

gcan,XN
(z,w) −

∑
γ∈SΓN

(δ;z,w)

gH(z, γw) = Op0,δ

(
1 +

1
λXN ,1

)
;

again, we have written gcan,XN
(z,w) instead of gcan(z,w) for the canonical Green’s function on

XN = ΓN\H.

Proof. The claim follows by combining Theorem 5.5 with ε = min{1
2 , λXN ,1/2} with Theorem 5.6

after having used the triangle inequality.

Corollary 5.8. Let {XN}N∈N be an admissible sequence of compact Riemann surfaces. For any
N ∈ N , we then have the estimate

max
z∈XN

|φAr(z)| = Op0

(
1 +

1
λXN ,1

)
;

here the C∞-function φAr has been introduced in (1) in § 2.2.

Proof. Using the known formula for gH(z,w), as stated in § 2.3, we can write

gcan,XN
(z,w) − gH(z,w) = gcan,XN

(z,w) + log |z − w|2 − log |z − w̄|2.
Therefore, when using the definition of the residual metrics as given in § 2.2, we then have

lim
w→z

(gcan,XN
(z,w) − gH(z,w)) = log ‖dz‖2

can,res − log(2 Im(z))2

= log
(‖dz‖2

can,res

Im2(z)

)
− log(4)

= log
(

µhyp(z)
µAr(z)

)
− log(4) = −φAr(z) − log(4).

From this, the asserted result follows directly from Corollary 5.7 by taking δ = C1/2 (see
Lemma 5.3(a)).

Lemma 5.9. Let X be any of the modular curves X0(N), X1(N), or X(N) having genus bigger
than one. Then, there is a constant c > 0 satisfying λX,1 � c.

Proof. We recall from [Bro99, Theorem 3.1], that

lim inf
N→∞

λX(N),1 � 5
36

.

Hence, there is a constant c > 0, independent of N , such that λX(N),1 � c for all N > N0, for
some N0, thus, the claim holds for the modular curves X(N) of genus bigger than one. Since X(N)
is a cover of X0(N) (respectively X1(N)), the Raleigh quotient method for estimating eigenvalues,
which shows that the smallest eigenvalue decreases through covers, now implies that λX(N),1 �
λX0(N),1 (respectively λX(N),1 � λX1(N),1), which completes the proof.

Corollary 5.10. Let {XN}N∈N be an admissible sequence of compact Riemann surfaces of
type (ii), that is, of modular curves. For any N ∈ N , we then have the following estimates:

(a)

max
z,w∈XN

|gcan,XN
(z,w) − ghyp,XN

(z,w)| = Op0

(
1

gXN

)
;

20
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Bounds on canonical Green’s functions

(b)

max
z,w∈XN

∣∣∣∣gcan,XN
(z,w) −

∑
γ∈SΓN

(δ;z,w)

gH(z, γw)
∣∣∣∣ = Op0,δ(1) (δ > 0);

(c)

max
z∈XN

|φAr(z)| = Op0(1).

Proof. Combine Lemma 5.9 with the previous results, namely Theorem 5.6 for part (a), Corollary 5.7
for part (b), and Corollary 5.8 for part (c).

Remark 5.11. It is immediate from Theorem 5.6 and Corollaries 5.7 and 5.8 that Corollary 5.10
holds for any admissible sequence, which admits a universal non-zero arbitrary cover X1 of X0,
we claim that

1
λX1,1

= OX0(g
2
X1

).

For this, one applies [Cha84, Theorem 14, p. 112], which reduces the problem to that of bounding
an isoperimetric constant associated to X1 as a function of the degree deg(X1/X0), and the bound
needed to prove this claim follows immediately from the definition of the isoperimetric constant in
question (see also [Cha84, Theorem 12, p. 111 and Definition 5, p. 110]).

Remark 5.12. As stated in the introduction, this paper was motivated by a question from
Edixhoven who asked for bounds for the canonical Green’s function on X1(N). Recall that, as
stated in the proof of Lemma 4.4, the hyperbolic Green’s function gH(z,w) (z,w ∈ H) is expressible
in terms of elementary functions. Combining this expression with Corollary 5.10(b) provides the
upper and lower bounds sought by Edixhoven.

Remark 5.13. In a slightly more general situation, one can restrict attention to arbitrary compact
subsets of XN , and consider admissible sequences of non-compact hyperbolic surfaces. Beginning
with Lemma 4.2, the constant rXN

would then be bounded away from zero with a lower bound that
depends on the subset of XN under consideration. The resulting bound for hyperbolic heat ker-
nels and hyperbolic Green’s functions then can be applied throughout the subsequent calculations.
By doing so, one can address the problem of understanding the asymptotic behavior of the canonical
Green’s function for a degenerating family of algebraic curves approaching the Deligne–Mumford
boundary of the moduli space of stable curves of a fixed positive genus, as first studied in [Jor90].

Remark 5.14. In his recent work [Küh05], Kühn used the analysis of the present paper and from
[JK04] to derive bounds for the arithmetic self-intersection number of the relative dualizing sheaf
on an arithmetic surface. By revisiting the analytic component of the computations in [AU97], he is
able to both simplify the method of proof given in [AU97] and to provide a technique which extends
to the modular curves X1(N) and X(N).
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Küh05 U. Kühn, An upper bound for the arithmetic self-intersection of the dualizing sheaf on arithmetic

surfaces, Preprint (2005).
Shi94 G. Shimura, Introduction to the arithmetic theory of automorphic functions (Princeton University

Press, Princeton, NJ, 1994).

J. Jorgenson jjorgenson@mindspring.com
Department of Mathematics, The City College of New York, Convent Avenue at 138th Street,
New York, NY 10031, USA

J. Kramer kramer@math.hu-berlin.de
Institut für Mathematik, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin,
Germany

22

February 27, 2006 Marked proof Ref: CMAT0199/31773e Sheet number 22



Annotations from cmat0199.pdf

Page 8

Annotation 1
Author: line 44.
Spelling `Laurant' OK here or should this be `Laurent'?

Page 22

Annotation 1
Author: ref. Fal84.
Please cite in text or delete from the reference list.

Annotation 2
Aurthor: refs JK05 and Kuh05.
Please update if possible.

Please reply to these questions on the relevant page of the proof; please do not write on this page.


