Exercises

Algebra II (Commutative Algebra)

Prof. Dr. J. Kramer

To be handed in on November 19th after the lecture

Please hand in every exercise solution on a seperate sheet and do not forget to put your name and student ID on every sheet.

Exercise sheet 5 (40 points)

Exercise 1 (10 points)

Let A be a commutative ring with 1. Let C and D be chain complexes of A-modules, and let f and g be morphisms between them. The morphisms f and g are said to be *chain homotopic*, if for each $n \in \mathbb{Z}$, there is an A-module homomorphism

$$s_n: C_n \to D_{n+1}$$
 such that $f_n - g_n = \partial_{n+1}^{\mathbf{D}} s_n + s_{n-1} \partial_n^{\mathbf{C}}$,

where $\partial^{\mathbf{C}}$ and $\partial^{\mathbf{D}}$ are the boundary maps of the chain complexes \mathbf{C} and \mathbf{D} , respectively. If \mathbf{f} and \mathbf{g} are chain homotopic, then for each $n \in \mathbb{Z}$, show that the A-module homomorphism

$$f_{n*} - g_{n*}: H_n(\mathbf{C}) \to H_n(\mathbf{D})$$

is the zero map, i.e., the morphisms \mathbf{f} and \mathbf{g} induce the same A-module homomorphisms $H_n(\mathbf{C}) \to H_n(\mathbf{D})$, for all $n \in \mathbb{Z}$.

Exercise 2 (10 points)

Does the following statement hold true?

Let \mathbf{C} and \mathbf{D} be chain complexes such that $H_n(\mathbf{C}) \cong H_n(\mathbf{D})$ for all $n \in \mathbb{Z}$. Then there exists either a morphism of chain complexes $\mathbf{f} : \mathbf{C} \longrightarrow \mathbf{D}$ or a morphism of chain complexes $\mathbf{f} : \mathbf{D} \longrightarrow \mathbf{C}$ such that $H_n(\mathbf{f})$ is an isomorphism for all $n \in \mathbb{Z}$.

Give a proof or a counter-example.

Exercise 3 (10 points)

Denote by $C^0 := C^{\infty}(\mathbb{R}^n, \mathbb{R})$ the ring of smooth real-valued functions on \mathbb{R}^n . A differential form ω on \mathbb{R}^n of degree r is given by

$$\omega = \sum_{\{i_1, \dots, i_r\} \subset \{1, \dots, n\}} f_{i_1, \dots, i_r}(x_1, \dots, x_n) \, \mathrm{d}x_{i_1} \dots \mathrm{d}x_{i_r} \quad (f_{i_1, \dots, i_r} \in C^0),$$

where the differentials dx_1, \ldots, dx_n are subject to the relation

$$dx_i dx_k = -dx_k dx_i \quad (j, k \in \{1, \dots, n\}).$$

Therefore, ω can be rewritten as

$$\omega = \sum_{1 \le i_1 < \dots < i_r \le n} g_{i_1, \dots, i_r}(x_1, \dots, x_n) \, \mathrm{d}x_{i_1} \dots \mathrm{d}x_{i_r} \quad (g_{i_1, \dots, i_r} \in C^0).$$

Consider the set

 $C^r := \{ \omega \mid \omega \text{ is a differential form of degree } r \}.$

Furthermore, consider the \mathbb{R} -linear map $d: C^r \longrightarrow C^{r+1}$ given by

$$d\omega := \sum_{1 \le i_1 \le \dots \le i_r \le n} \sum_{j=1}^n \frac{\partial g_{i_1,\dots,i_r}}{\partial x_j} dx_j dx_{i_1} \dots dx_{i_r}.$$

(a) Show that

$$\mathbf{C}: 0 \longrightarrow C^0 \stackrel{\mathrm{d}}{\longrightarrow} C^1 \stackrel{\mathrm{d}}{\longrightarrow} C^2 \stackrel{\mathrm{d}}{\longrightarrow} \dots$$

is a cochain complex (of \mathbb{R} -vector spaces), i.e., $d^2 = d \circ d = 0$.

(b) Compute the cohomology groups $H^r(\mathbf{C})$ in the case n=2, for $r\in\mathbb{Z}$.

Exercise 4 (10 points)

Let X be a non-empty topological space. The space X is called *irreducible* if for any closed subsets Y_1 and Y_2 of X, the equality $X = Y_1 \cup Y_2$ implies $X = Y_1$ or $X = Y_2$.

- (a) Show that X is irreducible if and only if every pair of non-empty open sets in X has a non-empty intersection. Furthermore, show that X is irreducible if and only if every non-empty open subset of X is dense in X.
- (b) Let A be a commutative ring with 1. Show that $\operatorname{Spec}(A)$ is irreducible if and only if the nilradical of A is a prime ideal.