Exercises

Algebra II (Commutative Algebra)

Prof. Dr. J. Kramer

To be handed in on November 26th after the lecture

Please hand in every exercise solution on a seperate sheet and do not forget to put your name and student ID on every sheet.

Exercise sheet 6 (40 points)

Exercise 1 (10 points)

Let A be a commutative ring with 1. Then, prove the following assertions:

(a) Let M and N be A-modules, and let $f:M\to N$ be an A-module homomorphism. Let

$$\mathbf{P}: \dots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow M \longrightarrow 0$$

and

$$\mathbf{Q}: \ldots \longrightarrow Q_1 \longrightarrow Q_0 \longrightarrow N \longrightarrow 0$$

be projective resolutions of M and N, respectively. Then, show that there is a morphism of chain complexes $\mathbf{f}: \mathbf{P} \to \mathbf{Q}$ extending f, i.e., for every $n \in \mathbb{Z}_{\geq 0}$, there exists an A-module homomorphism $f_n: P_n \to Q_n$ such that the diagram

commutes. Furthermore, show that any two such extensions of f are chain homotopic.

(*Hint*: Given $n \in \mathbb{Z}_{\geq 0}$ such that for all $0 \leq i \leq n$ the maps $f_i : P_i \to Q_i$ exist, use the projectivity of P_{n+1} to construct a map $f_{n+1} : P_{n+1} \to Q_{n+1}$.)

(b) Let \mathfrak{M}_A be the category of A-modules, $T:\mathfrak{M}_A\to\mathfrak{M}_A$ a covariant functor, and M an A-module. Then, using (a) show that the definition of the left-derived functor LT(M) of T is independent of the projective resolution of M.

Exercise 2 (10 points)

Let A be a commutative ring with 1. Let $0 \to M' \to M \to M'' \to 0$ be a short exact sequence of A-modules. Then, show that there is a short exact sequence of projective

resolutions of M', M, and M'', namely P', P, and P'', respectively, such that the diagram

commutes, and for every $n \in \mathbb{Z}_{\geq 0}$, the short exact sequence $0 \to P'_n \to P_n \to P''_n \to 0$ is split.

Exercise 3 (10 points)

Let A be a commutative ring with 1, and let M, N be A-modules. Let $E_A(M, N)$ denote the set of equivalent classes of extensions of M by N. Then, show that there is a bijection of sets

$$E_A(M, N) \approx Ext_A^1(M, N).$$

Exercise 4 (10 points)

Compute the \mathbb{Z} -module $\operatorname{Ext}^1_{\mathbb{Z}}((\mathbb{Z}/n\mathbb{Z})^2,\mathbb{Z}/n\mathbb{Z})$, and give an interpretation of the elements as extensions of $(\mathbb{Z}/n\mathbb{Z})^2$ by $\mathbb{Z}/n\mathbb{Z}$ in the case of n=2.