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Abstract

In this paper we analyze the integral of the star-product of (n+1) Green currents associated
to (n + 1) global sections of an ample line bundle equipped with a translation invariant
metric over an n-dimensional, polarized abelian variety. The integral is shown to equal
the logarithm of the Petersson norm of a certain Siegel modular form, which is explicitly
described in terms of the given data. This result can be interpreted as evaluating an
archimedian height on a family of polarized abelian varieties. The key ingredient to the
proof of the main formula is a dd°-variational formula for the integral under consideration.
In the case of dimensions n = 1,2, 3 explicit examples in terms of classical Riemann theta
functions are given.
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1 Introduction

1.1. A little known, yet important, formula in the study of theta functions of one variable is
the following. Let

9 [ g } (1,2) = Z emi(m+a)?T+2mi(mta) (z+5)

be the theta function with characteristics a, 8 € R and variables 7 € §;, the upper half-plane,
and z € C. Let A(7) be defined by

o0

A(T) —_ eQ'friT H (1 _ eQTrim‘r)24’

m=1

which is (up to scaling) the unique cusp form of weight 12 with respect to the modular group
SLo(Z). Then, we have the formula

/Ol/ollogﬁ{g}(r,O)
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One proof of this result follows from the product expansion for the theta function, viewed as a
function of one complex variable z € C (cf. [20]). A second proof follows from an analysis of
the integral: namely, one uses the differential operator d,d¢ to show that the integral defines a
harmonic function on the simply connected space $1, hence is equal to the log-modulus square
of some non-vanishing holomorphic function f on $;. A further analysis shows that 24 is a
cusp form of weight 12 with respect to the modular group SLy(Z), so f2* = ¢- A for some
constant ¢, which then turns out to be given by ¢ =1 (cf. also [1] or [10]).

1.2. In this note a generalization of the above theta function relation to polarized abelian
varieties of arbitrary dimension n > 1 is provided. Namely, in contrast to the 1-dimensional
situation, the divisor of the theta function

« . t . t
9 ,2) = eﬂ'z(m+a) T(m4a)+2ri(m+a)’ (2+03) 1
S Py} )

moves in general, as one varies 7 € §),,, the Siegel upper half-space. Therefore, the local
variation d.d$ of the integral

/01.../0110g19{g}(7',0)

does not vanish unless n = 1. Here these local variations for integrals of the above and of a
similar type are calculated.

2
doy...daydBy...dS3y,

1.3. These local computations together with some global argument lead to the following results:
Let 9(7, z) be the theta function (1) with characteristics « = 8 = 0 and let A, p e denote the
moduli space of n-dimensional abelian varieties of polarization type D equipped with the fixed
divisor given by the theta function ¥(7,z). Let £ denote the line bundle on the universal
abelian variety A,, p ¢ over A,, p ¢ induced by the theta function ¥(r, z) and being equipped
with the smooth hermitian metric || - || having translation invariant curvature. Then, (n + 1)
global sections s1,...,$p4+1 of £ (eventually, £ has to be replaced by some tensor-power of it
multiplied by the pull-back of some line bundle on A, pe) are constructed such that their
restrictions s1,7, ..., Sn41,7 intersect properly on the abelian variety A,(C) = C"/(7Z" & DZ™)
with 7 ranging over the complement of a 1-codimensional subset of A, p e(C). In the domain
under consideration the integral over the (n+ 1)-fold *-product of the Green currents g, -(z) =
—log||s;-(2)|I*> (j = 1,...,n + 1) then turns out to be given by the formula

/ G1.+(2) % o ® gny1..(2) = —log |F(7)|* — k - log det Im,
A.(C)

where F is a Siegel modular form of weight k& = § - det D - (n + 1)!. A refinement of the proof
of the above result leads to an explicit formula for F' in terms of the given data. In particular,
if we restrict ourselves in the domain under consideration to the set of those abelian varieties
A = A,, which are defined over some number field K and have semi-stable reduction at all the
finite places of the ring of integers Ok of K, the analytic contribution deg. (L, || - ||) to the
arithmetic degree c/k%(L, Il - |I) of the hermitian line bundle (L, || - ||) (or rather, of its unique
cubical extension (L, || - ||) to the Néron model A/O) induced by (L, || - ||) is essentially given
by the above integral, namely we have the formula

1 1
degoo (L, ]I ) = =5 > (10g|F(T(”))2+2'detD~(nJrl)!ologdetImT(U)),
o:K—C



the sum being taken over all embeddings from K to C and 7(?) € §,, being defined by A x,C =
C" /(1) 7" @ DZ™). Of course, it has to be pointed out that the analytic part of the arithmetic
degree depends on the choice of the sections under consideration, while the arithmetic degree
itself is independent of that choice. In the special case of semi-stable elliptic curves A/Q, a
geometric computation together with the knowledge of deg. (L, ||-||) leads to an explicit formula

for the arithmetic degree (Te\g(L7 - 1D)-

1.4. After a short review of some preliminaries in section 2, we perform in section 3 the compu-
tations of the local variations of the integrals mentioned in 1.2; the main result here is contained
in Proposition 3.9. In section 4, in particular in Proposition 4.4, we provide the necessary alge-
braic geometric background in order to be able to globalize the results of section 3. In section 5,
Theorem 5.2 and Corollary 5.4, we then prove the results mentioned in 1.3 concerning the com-
putation of the integral over the (n + 1)-fold x-product of Green currents. In section 6, we give
some examples illustrating how Corollary 5.4 leads to explicit formulas.

1.5. We would like to thank J.-B. Bost and C. Soulé for their interest in the subject and very
stimulating discussions. Furthermore, we point out to K. Kohler’s preprint [9], which - from
the point of view of the arithmetic Riemann-Roch Theorem - is complementary to the approach
provided by this paper.

2 Preliminaries

2.1. Abelian varieties. We denote by A an n-dimensional abelian variety of polarization type
D = diag(d, ...,d,), where di, ..., d,, are natural numbers satisfying d;|d;11 (j = 1,...,n — 1),
defined over some field K C C; we set d := det(D) = d - ... - d,,. For arithmetic applications
we will restrict ourselves in parts of sections 5 and 6 to polarized abelian varieties A/K, K a
number field, having semi-stable reduction at all the finite places of the ring of integers Ok of
K.

The complex points A(C) of A constitute the n-dimensional, complex torus C"/(7Z" &
DZ™), where 7 is an element of the Siegel upper half-space $),, of degree n. In the sequel, the
dependence of A (and objects related to A) on 7 will be indicated by adding 7 as an index,
e.g., by writing A, for A, etc.. We note that the paramodular group I';, p, defined by

_Jp_( ar Dbr 0O D\, ( 0 D
F"’D'_{R_(CR dR)EMzn(Z”R(—D O)R_<—D O)}’

acts properly and discontinuously on $),, by the formula
71— R(r) := (apT + brD)(D~'cgT + D~ 'drD) ™",

and we have A,(C) = A./(C), if and only, if 7/ = R(7) for some R € I';, p (cf. [7], chapter V,
or [16], chapter 8).

We denote by L = L, the symmetric and ample line bundle on A = A, associated to the
divisor of the theta function

19(7', Z) =1 [ 8 :| (T, z) = Z ewimt7m+27rimtz.



We equip the complex line bundle L, ¢ = L; ®x C with the smooth hermitian metric || - ||,
which has translation invariant curvature; it is unique up to scaling by a positive real number.
The norm of a section s, of L, is explicitly given by the formula

87 (2)[12 = |87 (2)|2e2™"7"¥ det /2,

here T = £+ i € 9, and 2 = x + iy € C". The Green current g, associated to the section
s, then becomes g,(z) = —log||s,(2)|?, and, with d¢ = (47i)~(d, — 9.), we easily compute
d.dSgr + Oqiv(s,) = w with the (1,1)-form w = %dzt -n~Y A dz. We note that the n-fold wedge
product €, := A" w is the standard volume form on A, (C), up to a factor n!; namely, we have

Q, = (=)= D/2n 2= pldet = dzy Ao Adzy AdZL A .. A dZ,
= nldetntdry Adyy A... Ndzp Adyp.

2.2. Moduli spaces. We denote by A,, p the moduli space of n-dimensional abelian varieties
of polarization type D. Furthermore, we denote by A, p e the moduli space of n-dimensional
abelian varieties of polarization type D equipped with the symmetric and ample line bundle
associated to the divisor of the theta function J(7, 2); A, p,e is a finite covering of A, p. In
general, A, p e is a smooth algebraic stack defined over Q (cf. [19], chapter 7; for the field of
definition, cf. e.g., [7], chapters IV, V); by a Lemma of Serre, it is a smooth and quasi-projective
scheme defined over Q provided d; > 3. In fact, it follows as in [3], chapter V, that A,, p e can
be defined over Z[1/d].

Let m: A, p.e — An,p,0 be the universal abelian scheme over A,, p o. If 4|d;, the divisor of
the theta function 9(7, z) descends to give rise to a symmetric and relatively ample line bundle
L on A, pe restricting to the prescribed symmetric and ample line bundle on the abelian
variety in question, i.e., for x € A, p.e and A, = 7 1(z), the restriction £|4_ is equal to L.
From now on, we make the assumption 4|d; throughout sections 2 to 5; in the last section
we will relax this assumption slightly. As a further ingredient we also need the canonical line
bundle K on A, p e given by the pull-back of the determinant of the relative cotangent bundle
Q}LXW,,D,G/A”,D,@ via the zero-section e : A, pe — An,p.0-

By the theory of toroidal compactifications (cf. [3], chapters V, VI) there exist smooth
compactifications of A, p e, resp. A, pe, given by smooth and projective schemes ZmD,@,
resp. A, p.e, together with a proper morphism 7 : A, p.e — A, p.e extending m, everything
being defined over Q (or even Z[1/d]). By the method of toroidal embeddings K extends to a
line bundle K on A, p e and L extends to a relatively ample line bundle £ on A4, pe. As in
[11], Theorem 2.12(ii), in the case of principal polarizations, using the results of [3], chapter V,
it is possible to prove that the invertible sheaf M(my,ms) := FRE™ ® o™ s very ample
provided m; >> mg >> 0. The local triviality of K on the base A, p e implies that, for
€ A pe and A, = 71 (x), the restriction M(m1,m2)|a. is equal to LE™2.

Analytically, A, pe has the following description (cf. [7], chapter V, or [16], chapter 8):
An,D,@(C) = Fn,D,(—)\ﬁm where

o _( 1+Da Db _a,b,c,d e My (Z)
Tnpe = {R €lnp ‘ R = < De 1+ Dd > " b,c even diagonals [’
3 Local computations

3.1. Notations. Throughout this section we make the following hypothesis: We let Ay := A,
be a fixed, n-dimensional abelian variety of polarization type D defined over some field K C C



such that the complex line bundle Ly ¢ := L, ¢ under consideration (cf. 2.1) has (n+1) global
sections $1,0 = $1,rgs -+, Snt+1,0 *= Sn+1,7, Whose divisors intersect properly on Ay (C).

The condition of proper intersection being open, we know that there exists an open Hausdorff
neighbourhood Uy of 7y € $,, such that the (n + 1) global sections s ¢ extend for all 7 € Uy
to (n + 1) global sections s, of L, ¢ with properly intersecting divisors on A.(C). For k =
1,...,n+ 1, we then put

O, 1= div(sk ;) » Ok0 = Ok 7y;
Dk,‘r = @1,7 Tt @k,r ’ Dk,O = Dk,'ro'
We make the convention Dy , := A,(C) and Dy := Do,

3.2. Lemma. With the above notations and m = 1,...,n+1, the m-fold x-product g1 ; *... % g +

of the Green currents g +(2) = —log ||sk.~(2)||? is given by the formula
m
91,7 * . ¥ Gm,r = Z 9k, A 6D;€_1)T A mekv (2)
k=1

where Q. denotes the k-fold wedge product of the (1,1)-form w with itself and Qg := 1.

Proof. We proceed by induction on m. For m = 2 we have g1+ * go.r = g1 Aw+ g2+ A 591,77
which coincides with (2). Therefore, we may assume that (2) is proven for m € {1,...,n} and
we have to establish the corresponding formula for m + 1. By the definition of the s-product
we find

(gl,T koK gm,‘r) * Im+1,7 = (91,7— koK gm,T) Nw + 9m—+1,7 A 5Dm,7— =

m m—+1
> Grr Ay Ak AW F Gmi1r AODy s = D Gk Ay A g1k
k=1 k=1

3.3. Lemma. With the above notations and k =1,...,n+ 1, the integrals

1
Cn,D:k, 7 = 5 Qn—}-l—k’
Dy_1,+

depend only on n and the polarization type D, i.e., are independent of k and 7 € Uy, and are

given by
- d-nl= L d d !
Cn,D ‘= B n: = 2 1" .. n "N

Proof. By the de Rham Theorem we can interpret the integrals ¢, p,x,r as the intersection
numbers

1
_ n+1-—k
Cn,D;k,7 = §Dk—1,‘r : 6177- )

noting that Q,,11_x is the (n + 1 — k)-fold wedge product of the (1,1)-form w and that the
latter is the first Chern form of L, ¢. By linear, hence numerical, equivalence, we then have

1 1
_ k—1 n+l—k __ n
Cn,Dik,m = 561,7 : @1,7 - 591,7"

The result now follows from [16], Corollary 10.5(d). O



3.4. Remark. For the subsequent considerations it will be very useful to replace the complex
variable z € C" by the real variables o, € R", where z = —7 - a + . The (1,1)-form
w then simply equals w’ = day A dBy + ... + day, A dB, = da' A dS and becomes therefore
independent of 7. More generally, we denote the differential form corresponding to €2 under
the above change of variables by Q}; finally, we put € := 1. In particular, ), is given by
QL =nlday AdBy A ... Ndayp, A dS,.

With z = —7 - a + ( the (n + 1) sections s ,(z) (being linear combinations of the theta
functions with characteristics in D~'Z"/Z") give rise to smooth functions s} (c, (), defined
through the equation

S;C’-,—(OQﬂ) . e—ﬂiatTOé+27TiOétﬁ — 5k,7(2)~

One easily checks that
sk, (2)|1* = |8k, (@, B)|? det '/2,

We put g, -(a, 3) := —log|s}, (o, 8)]* and note that the functions g;, (o, §) are harmonic in

T away from Oy ;. The Green currents gy ,(z) can now be written as gx ,(z) = —% logdetn +
/

gk;"r(a7 6)'

3.5. Further notations. FEventually, after a resolution of singularities, A¢(C) can locally
be identified with C", with coordinates w = (wy, ..., w,), such that ©y ¢ is described by the
equation wy = 0 and Dy, ¢ by the equations w; = ... = wy, = 0; by abuse of notation, we denote
the latter subsets of C™ again by Oy o, resp. Dy o (k =1,...,n). For suitable ¢ > 0, we define

the following tubular neighbourhoods @,(f) of O, resp. D,(f) of Do (k=1,...,n):
@55) = {w = (w1, ...,w,) € C"| |wg|* < &%}, resp.
DE = {w = (w1, ..., wp) € C"| |wy|> + ... + Jwe]® < £2}.

We denote the differential form on C" induced by €} under the above identification by o
(k=0,..,n).
Following [5], p. 80, we then define for the cycles O, resp. Dy o, the functions fg, , on

9,(5), resp. fp,, on D,(f), by

for.(w) = log lwp|* (k=1,...,n), resp.
4m 2 21—k
= k=2 ..n),
o 16) = = g (et )1 )
where vy, is the volume of the unit sphere in CF, ie., yo, = 2% /(k — 1)!'; we further put
IDy1o = fo,,- These functions have the property that for any smooth function h on @,26)7 resp.

D,(f) , we have

/@(E) h(w) Adey g AQn_1 = /@(E) h(w) A dwds, fo, o (W) AQu_1 (k= 1,...,n), resp.
k k

/ o, Mw) Ao A Qnp = / o 1w A duds, fo, o () AQny (k=2,...,n).
DkE D,f

For 7 € Uy, the above local identification of Ag(C) with C" leads to a local identification of
A;(C) with (the same) C" such that Oy  is described by the equation wy = pi(7) and Dy, ,



by the equations wy = p1(7), ..., wy = pi(7) for certain holomorphic functions py(7), ..., pr(7)
satisfying p1(79) = ... = pr(70) = 0; by abuse of notation, we denote the latter subsets of C"
again by ©y, -, resp. Dy, (k= 1,...,n). By choosing the neighbourhood Uy and ¢ > 0 suitably,
we may assume that Oy, ., resp. Dy, ,, vary within the thickenings @,(:), resp. D,(f).

As before, we can now define distribution functions f@,w on @,(f) for Oy ;, resp. ka,T on

D,ﬁa) for Dy, -, when 7 varies in the neighbourhood Uy, namely

fou. . (w) := log |wy, *pk(T)‘Q (k=1,...,n), resp.
47

Iy, (W) = —m (Jwy = pr ()P A+ e+ wg — o (T)P)TF (B=2,...,n);

again we put fp, = := fe, .. The functions fe, , resp. fp, ,, satisfy the same type of inte-
gration formulae as the functions fe, ,, resp. [p, ,, with de, ,, resp. dp, ,, replaced by de, .,
resp. 0p, .. It is important to observe that the functions fe, , resp. fp, ., are defined on the

fixed sets @,(f), resp. D,(f), which are independent of 7 € U.

3.6. Remark. By means of the local identification of A, (C) with C" made in 3.5, the (n + 1)
functions s} (a, 3), resp. g, ,(a, 3), of Remark 3.4 give rise to functions 8y ,(w), resp. g -(w),
on C". Again, we note that the functions §i (w) are harmonic in 7 away from Oy, , and that
the Green currents g, -(z) can be written as gj - (2) = —3 logdetn + g - (w).

3.7. Lemma. With the above notations, we have for k=2,...n+1

/(s) ék,r(w)/\%k_l,T/\Qn+1—k=/(5) G (W) A duwdSy fo, (W) A Q1.
Dk—l Dk:—l

Proof. For large T, define g,iTg to be a smoothening of the function min{gy -, T} such that for
each w € D,(Cazl, we have
T T
g (w) < g1 (w),

if Ty <T5. By the definition of the function fp, ,  , we have

/( ) gl(c]jr) (w) A 5Dk—l,7' A QnJrl*k = /( ) g](j;.)(w) A dwdi)ka—l,-r (w) A anl'
D2, D7,

We now apply the monotone convergence theorem to conclude the stated result. o

3.8. Lemma. With the above notations, we have for k =2,...,n

de5/ foe i (W) Ao, . A Q1 = d.dS FDp (W) A Q. (3)
DY, D

Proof. Assume first k > 2. We begin by rewriting the right hand side integral of the claimed
formula (3): For this we first integrate with respect to the variable wy, keeping all the other
variables fixed. The corresponding region of integration is a disk of the form A, = {wy €
Cllwk| < ex} (63 = &2 — 25;11 |w;|?), which we parametrize by the polar coordinates wy, —



pi(T) = pe’?; note that the radius p is a function of the angle ¢. With this notation we need
to evaluate the integral

4r /27f /P(tp) pdpde
2k =272k Jo  Jo (lwi=pr(M)P + o+ [wemr — pr—a (T) P + p?)F 71
Integrating with respect to p, this integral becomes
A 1 o 2 2, oy—kt2|’®
— . — 1 — Pk— B dy;
S 5 ), m R et s = R )72

using the recursion formula oy /y2x—2 = 7/(k — 1), the above integral can be rewritten as

2 27 )
G (P OR 4 s = p () 4
47 .
m - (Jwy _pl(T)‘Q + o+ |wg—1 —pk71(7)|2)2 k|

To complete the computation of the integral in question, we now have to integrate the above
two summands with respect to the variables wy, ..., wi_1 together with the additional variables
W1, -, Wy It turns out that the corresponding integral over the second summand equals

/ () ka—lﬂ' (w) /\ 5@&,— /\ Q’I’L*17
De

k—1

which is precisely the left hand side integral of the claimed formula (3). To complete the proof of
the Lemma, we therefore need to show that the corresponding integral over the first summand
is harmonic in 7.

Recall that the thickening D,(:) is by construction independent of 7 € Uy. For any angle
©, the quantity p(p) is the distance from pg(7) to a point at the boundary of Ay, which is in
fact a point on the boundary of Dl(f); we can write p(p) = |a(p,e) — pp(7)|, where a(p,¢) is
independent of 7. Therefore, for every ¢, the integrand in question is bounded, hence harmonic
for 7 € Uy, with range of integration being independent of 7. Consequently, we can interchange
the operator d,dS with the corresponding integration and conclude that the integral over the
first summand is harmonic in 7 as claimed.

The case k = 2 is treated in an analogous way by using the explicit formulae for fp, . = fe, .

O

and sz,-r :
3.9. Proposition. Let {U,,}M_, be a complete set of subcubes of Ag(C) determined by torsion

points such that within each subcube U, the local identifications of 3.5 are valid. Then, with the
above notations, we have the following variational formulae for T € Uy (recall ¢, p = % ~d-n!):

(a)
M ~
de:/ 91.+(2) AQy + cn.p - drdS logdet n = —d,d° Z / fo, . (w) A Q.
A-(C) m=1 @is)ﬁUm ‘

(b) For k=2,...,n we have

dods [ ur(2) Aoy, A Rusri o+ e - drd logdety =
4-(©)

M
d.dS Z:l /D

M
Fop s () Ay — dyds S / Fou () Ay + Hyr (0),
m=1 D

() (e)
) NUm nu,,



where ].iII(l] Hy () =0.
e—
(c)

d,ds / gn+1,-(2) Nop, . ANQo + ¢ p - drdi logdetn =
A-(C) '

ddCZ/

where 1in(1) Hyi11-(e) =0.

) N Qn + Hn+1,7'(€)a

n'r

ff’nU

Proof. (a) By Remark 3.4 we have g1 -(z) = —3 logdetn + g1 ,(a, 3), hence
dei/ gl,T(Z) A Qn =
A, (C)

e - drd: logdetn +dod | (0. 8) N 2
R"/Z"@R"/DZ"

To compute the variation of the latter integral, we decompose it as follows, using Remark 3.6

d.d: [ g 1(, ) A Y, =
R™/Z"®R™/DZ"
d.d° Z /

The variation of the integral over the region U,, \ ((—)f) N U,,) is zero, since the region of
integration is independent of 7 € Uy and the integrand is harmonic in 7 away from O, ..
Therefore, we obtain

gl"’( )/\Q +dch/ ng )/\Qn

Un\(©91U,) 0y,

M
deﬁ/ 91,7(2) NQp + cn.p - drds logdet n = dd5 Z / g1.-(w) Ay, =
A,(C) m=101" U

dod? Z/ (91,7 (w) + fo . (1)) A Dy — ot Z/ for., (w) A S

(5>mU (5)mU

Again, the variation of the first integral is zero, since the region of integration is independent
of 7 € Uy and the integrand is harmonic in 7. Hence, we arrive at the formula

deg/ 91.+(2) AQy + cnp - drdS logdetn = —d,d° Z/ fo, . (W) AQy,
A, (C) G)(E)OU,,L '

as claimed.
(b) For k =2,...,n we set

Ik,T = / gk,‘r(z) A 5Dk,1,.,. A Qn-‘rl—k-
A (C)



Writing Iy, , as a sum of integrals over the subcubes under consideration and substituting
i (2) = —% logdet  + gi,-(w) as in Remark 3.6, we find, using Lemma 3.3

Iy, 7 = —CnD" IOgdetn + Z / ( ) gk T ) A 5Dk~—1,7- A Qn+lfk'
21NUm

By applying Lemma 3.7, we obtain

I » = —cp.p -logdetn + Z/ Gk, (W )/\dwdf,ijk_l,(w)/\anb

ﬂ U

Next we integrate the above integral by parts twice in order to obtain the formula

M
Iy = —cy.p -logdetn — ) /a ey P A DT D () A Qo+
m— D;* NU,

Z / 05,07 () A o, () A Dyt
D(E) ﬁU )

M
S [ dudiinw) Ao, () A
m=1 D,(fjlﬁUm

Let us now examine the three integrals in the above expression, beginning with the two bound-
ary integrals over (D), N U,,) = (0D, N U,,) U (D), N dU,,). First, we note that both
integrals over the boundary piece D( )1 N 9U,, will vanish after summing over m = 1,..., M,
since all normal vectors involved appear in pairs with opposite directions. Hence, we are left
to consider the two integrals over the boundary piece 8D,(f_)1 N U,,. For this we set

M
Hirle) = a2y [ G () A o,y () A s

(e)
oD,” NU,,

dyd Z / 05,31 (10) A f s (1) A Dy,

D U,

Since the region of integration in the above two integrals is independent of 7, let us interchange
the differentiation d.d$ with the integration over 8D,(Ci)1 NU,,. Expanding gj ,(w) in the form

Gr,r(w) = —log |wy, — pr ()] + log [hy, 7 (w)[?

with hy (w) a non-vanishing, holomorphic function on D( ©) 1 MU, we observe that replacing
Gk, (w) by —log |wg —pk(7)|?, changes Hy, ,(¢) only by O, (e ) Therefore, in studying Hy, ,(¢) up
to the order O (¢), we may substitute gy -(w) by —log |wy — pr(7)|?. Using then Leibniz’ rule
twice in order to compute d.d$ and setting 7 = 7y, we obtain eight integrals over aD,(f_)l NUn,.
Observing that —log|wy — pk(70)|> = —log|wg|* and fp, ,,(w) are even functions and that
each of the eight integrands in question contains exactly three derivatives, we conclude that in
all eight cases the integral vanishes as an integral of an odd function over a symmetric region.
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Finally, we obtain Hy, -, (¢) = Oy, (€), and hence Hy, ,(¢) = O,(¢) by continuity with respect to
T, i.e., 111% Hy () = 0. As for the integral over D,(f_)l N U, we use the differential equation
£—

for gr -(2), resp. f]k;(w), to write

M
Z / dwdfugkﬂ'(w) A ka-fl,T (’lU) A anl -
m=1 D;E_)lﬁUm

M M
Z / (© kafLT (w) Ay, — Z / kafl,T (w) A 5@k,7 Ay
m=17D, 1NUm m=17D

(e)
kilmUm

Summing up and taking d,d<, we get the equation

drdi/ Gk (2) NOpy_y . ANQni1—k + Cn,p - drd; logdetn =
A,(C)

M
kafl,r (’LU) Ay — deS— Z / kafl,T (w) A 6ek,7' N1 + Hk,T(E)'
m=1 D

) NUm

M
deds /
m=1 D

By applying Lemma 3.8, which is easily verified to hold true with the domain of integration
D,(i)l replaced by the domain D,(:EI N Uy, the proof of (b) is then complete.

(c) To prove the last part of the Proposition, we proceed as in (b) with k = n+1. Observing

(e)
k-1NUm

that the Dirac current dg,,, . vanishes on D) N U,, for sufficiently small e, we obtain from
the last formula in the proof of part (b)

d.d; / Gnt1,7(2) Nop,, , NQo + cn p - drds logdetn =
A,(C)

M
de;:_ Z / fDn‘T (w) AN Qn + Hn+l,7(5)a
D

m=1 atom

where H,41,,(¢) is defined as in part (b) with k¥ = n + 1. This concludes the proof of the
Proposition. O

3.10. Corollary. Let Ay = A, be an n-dimensional abelian variety of polarization type D
defined over some field K C C such that the complex line bundle Lyc = L, c has (n+ 1)
global sections $10 = S1.7y, s Snt+1,0 = Sn+1,7, whose divisors intersect properly on Ay(C).
Then, there exists an open Hausdorff neighbourhood Uy of 19 € 9, such that the given situation
extends to Uy, and the following variational formula holds for oll T € Uy:

d.d: </ 91,7(2) * ... % gny1,7(2) + Cp p - log det n) =0,
A, (C)

where Cpp == (n+1) - cyp=7%-d-(n+1).

Proof. The existence of the claimed open Hausdorff neighbourhood Uy of 7y € 9, is evident
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by 3.1. Then, Lemma 3.2 applies in order to obtain the formula

d‘rdf— (/ gl,‘r(z) ook gnJrl,T(Z) + Cn,D - log det 77) =
A, (C)

n+1

Z (drdi/ Gk, (2) NOp,_, . AN Qi1 + Cnp - drd logdet 77) .
k=1 AT((C)

Eventually by shrinking Uy suitably, the corollary now becomes an immediate consequence of
Proposition 3.9 by letting ¢ tend to zero. a

4 Global arguments

4.1. Lemma. Let F be a field of infinite cardinality, X/F a geometrically irreducible, projective
scheme of dimension d > 2 and N a very ample line bundle on X. Then, for any integer v >> 0
and any integer k € {1,....d — 1}, there exists a non-empty Zariski open subset consisting
of (k + 1)-tuples of global sections (s1,...,s141) € I'(X,N®)k+1 satisfying the following two
properties:

(a’) div(sy), ..., div(sg41) intersect properly on X,

(b7) div(s;, )N ...Ndiv(s,, ) is geometrically irreducible for any choice of k indices 1 < iy < ... <
ir < k+1.

Proof. Since N is very ample, there exists for any integer v >> 0 an embedding ¢ : X — Pg
for some N, defined over F, such that @*Opg(l) = N®¥ and such that the restriction map
o T(PY, Opx (1)) — (X, N®") is surjective; we fix such an embedding in the sequel.

Let Grass(l, N) denote the Grassmannian variety parametrizing the I-codimensional linear
subvarieties of PY¥. Furthermore, let U; be the subset of those [-tuples of global sections in
r(PY, Opx (1))}, whose divisors constitute I properly intersecting hyperplanes in P . We note
that U; is a non-empty Zariski open, hence dense, subset of T'(P¥, Opg(l))l and that there is
a natural, surjective morphism p; : Uy — Grass(l, N)(F).

By [8], Corollaire 6.11.1 and the assumption k+1 < d, there exists a non-empty Zariski open,
hence dense, subset V}/, ; € Grass(k + 1, N)(F) with the property that codim(L N X) =k + 1

for all L € V/, ;. We define Vi1, := p;il(Vk’H); we note that V.1 is a non-empty Zariski
open, hence dense, subset of Uy 1, whence of I'(P}, Opg(l))k“, consisting of (k4 1)-tuples of
global sections (s}, ...,5,, 1) € Py, (’)[Epg(l))k‘*‘1 with the property that

codim(div(sy) N...Ndiv(sy ) NX) =k +1.

Again, using [8], now Corollaire 6.11.3 and the assumption k¥ + 1 < d, one proves the
existence of a non-empty Zariski open, hence dense, subset W, C Grass(k, N)(F) such that
the intersection LNX is geometrically irreducible for all L € W}. We define Wy, := plzl(W,;); we
note that Wj, is a non-empty Zariski open, hence dense, subset of Uy, whence of T(P% Opy (1))*,
consisting of k-tuples of global sections (s}, ..., s}) € T'(Py, (’)Pg(l))k such that div(s}) N...N
div(s)) N X is geometrically irreducible.

For any choice of k indices 1 <41 < ... < i <k + 1 consider the projections

Qoo T(BY, Op ()5 — T(BY, Opx (1))
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given by mapping (si,...,s; ) to (s ,..., s} ). Define the subset

—1
Uy, = Vi1 N N o (W)
1< <. < <k+1

it is a non-empty Zariski open, hence dense, subset of F(Pg , Opg(l))k"‘l. By the surjectivity
of the restriction map ¢* : F(P]}[7(’)Pg(1))k+1 — T(X,N®")F+1 the set p*Uj, is a non-empty
Zariski open subset of I'(X, N®")**+1 consisting of (k+ 1)-tuples of global sections (s1, ..., Sg+1)
satisfying the two properties (a’), (b’). O

4.2. Remark. Assuming that F' is of characteristic zero and that the scheme X/F' is smooth,
it is easily seen by using [8], Corollaire 6.11.2, that Lemma 4.1 holds true with property (a’)
replaced by the property that div(sy), ..., div(sg41) intersect properly and smoothly on X.

4.3. Notation. Any k global sections s1, ..., sp of M(mj,mz) induce k global sections of the
complex line bundle M (m1,ms) ®q C via the canonical embedding of Q into C; these sections
will again be denoted by si,...,s;. With this in mind, we define for any k global sections
51,8k € I (A, p,0, M(m1,mz)) the following two subsets of A, pe(C):

8(81, ey Sk) = {1‘ S Zn,D,@(C) | diV(51|;71(I)), ey diV(Skhfl(z))
intersect properly on 7 1(x)},
T(s1,.8k) = Anpe(C)\S(s1,..., 8k).

We note that 7 (s1, ..., sx) is a Zariski closed subset of A, p o(C).

4.4. Proposition. With the above notations we have the following result: For mi >> mgq >> 0
there exists a non-empty Zariski open subset consisting of (n + 1)-tuples of global sections
(81,0, 8nt1) €T (Zn,D,@,ﬂ(ml,mg))nH satisfying the following two properties:

(a) codim(7 (s1, ..., Sny1)) > 1,

(b) codim(7T (8;,,...,8:,)) > 2 for any choice of n indices 1 < iy < ...< i, <n+1.

Proof. By applying Lemma 4.1 with F = Q, X = A, pe, N = M(my,ms) (ie., choose
mq >> mo >> 0 in particular such that ﬂ(mhmg) is very ample) and k£ = n, we find
for v >> 0 a non-empty Zariski open subset consisting of (n + 1)-tuples of global sections
(s1,..y8p41) € T (Zn7D7@,M(le,I/m2))n+1 such that the corresponding (n + 1)-tuples of
holomorphic global sections, which we denote again by (s, ..., Sp+1), satisfy the following two
properties
(a’) div(s1), ..., div(sp+1) intersect properly on A, p.e(C),
(b)) div(s;,) N...Ndiv(s;,) € Ay p,e(C) is irreducible for any choice of n indices 1 < iy < ... <
iy <n+ 1.

It remains to show that the global sections under consideration satisfy properties (a) and
(b); to do this we write m; instead of vm; (j = 1,2). To check property (a) we now put

Xl,...,n+1 = diV(Sl) n..N diV(Sn+1),

which is by construction an (n + 1)-codimensional cycle in A, p e(C). Furthermore, let p :=
T : X1, n+1 — An.p,o(C) denote the restriction of @ to X; . ,4+1 and put ¥V :=
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p(X1, .m+1) € Anpe(C). Since p is proper, the subset Y is Zariski closed and we have
codim(Y’) > 1. On the other hand, we have by definition

T(s1, -, 8n41) = {w € Y[ dim(p~" (2)) > 0};

hence, we arrive at codim(7 (s1, ..., Sp+1)) > codim(Y) > 1.
To check property (b), we note that for any choice of n indices 1 < i1 < ... < i, <n+1,
the intersections
'Xily-”ain = diV(Sil) n...N le(Sln)

are irreducible subschemes of Zn, p,0(C) of codimension n. Let us fix a set of indices 1 <41 <
... <ip <n+1and denote by p' :=7|x, . :Xi i, — Anpe(C) the restriction of 7 to
Xi,,...i, - Because the restrictions of the n global sections s;,, ..., s;, to any fibre of 7 intersect
in at least one point, the morphism p’ is surjective. Hence, we have by definition

T (Siyy ey 8i,) = {2 € Ay p,o(C) | dim(p' " (z)) > 1}.

n

We note that the Zariski closed set 7 (s, ..., s;, ) is properly contained in A, pe(C). If we
now had codim(7 (s, , ..., 8;,)) = 1, we could deduce the inequality dim(p’~17 (s;,,...,8:,)) >
(dim(A4, p,6(C)) —1) + 1, ie., codim(p'~*T (s, ..., 8;,)) < n; the irreducibility of X;, . ;.
would then imply p' =17 (s;,, ..., 8:,,) = X4,...i,, which contradicts the fact that 7 (s;,, ..., s;,)
is properly contained in A,, p o(C). Hence, we deduce codim(7 (s;,, ..., s;,)) > 2, as claimed.
O

4.5. Remark. Denote by 7, p e the canonical projection m, pe : ., — A, pe(C) and,
with the notation 4.3, set

S (81,0, 85) = 71';71379(8(51,...,5;6))g.‘{j”,

T/(Sl7"'7sk) = Tr;}D,@(T(Sla'"aSk)) gﬁn

We then call (n + 1) global sections $1,...,8,41 € T (ZmD’@,M(ml,mg)) to be in general
position at 79 € Hy,, if the following properties are satisfied:

(a) codim(77(s1, ..., Spt1)) > 1,
(b) codim(7” (84, ..., 8i,)) = 2 for any choice of n indices 1 < iy < ... < i, <n+1,
(c) 70 € §' (815 vy Snt1)-

The fact that for ms sufficiently large there exists a non-empty Zariski open subset of
(n + 1)-tuples of global sections (si0,...,Sny1,0) € T (Ao, L?mz)nﬂ, whose divisors intersect
properly on Ay, together with the statement of Proposition 4.4 implies that there exist (n+ 1)
global sections s1,...,5,41 € (Zn,ae,ﬂ(ml, mg)), which are in general position at 79 € 9,
provided m; >> mgy >> 0. Furthermore, we note that the above construction shows that
the global sections si, ..., $,41 can be chosen as rational, hence integral linear combinations of
products of theta functions and Thetanullwerte with characteristics in D=1Z" /Z".

4.6. Remark. Assume that there are (n+ 1) global sections s1, ..., Sn41 € I'(4,, p .o, £), which
are in general position at 7y € $,,. Then, by associating

x— P= P(x) S diV(Sllﬂ.—l(w)) RN diV(Sn|ﬂ.—1(I)),

we obtain a holomorphic section P : A, p o — A, p.e. By [25] such a section is necessarily
a torsion section, whence the «a, 8-coordinates of P(z) are constant, i.e., independent of = €
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A, p.o,resp. T € 9, mod.Z" and rational. With regard to Remark 3.4, we therefore have for
all 7 € 8'(81, -y Snt1)

d.d Z Gnt1,7(P) + cnp -logdetn | =0.
PeDy, -

Hence, by Corollary 3.10, we obtain locally for all 7 € D, an embedded unit disc satisfying
D C S'(s1,...,8n) and D* C S'(s1, ..., Sny1) (here D* = D\ {0}),

d.d; / 91,7(2) * .. % gyr +(2) — Z gn+1,-(P)+n-cpp-logdetn | =0.
4-(©) PED, ,

5 Main results

5.1. Definition. A holomorphic function f on $,, n > 2, is called a Siegel modular form of
weight k with respect to the subgroup I'y, p.e of the paramodular group I'y p and some finite
character x : Ty, p.e — C*, if it satisfies (cf. 2.1)

F (R(7)) det(DYcgr + D~ 'drD) ™" = x(R) F(1)

R= ( 4R bR ) EFn7D7@.

for all

cr dr

The C-vector space spanned by such functions will be denoted by My (T'y. p.e,X)-

5.2. Theorem. Let Ay = A., be an n-dimensional abelian variety, n > 2, of polarization type
D together with the line bundle Ly = L., everything being defined over some field K C C. Fur-
thermore, assume that there exist (n+ 1) global sections s1, ..., 8p41 €T (Zn’p’@,ﬂ(ml, mg)),
which are in general position at 79 € $Hn,. Then, there exists a Siegel modular form F €
Mec, oy my Tnp,esX) of weight Cy pimy m, = (M1 +ma/2) -my -d- (n+1)! and some finite
character x such that the equality

/ . 91,7(2) * oo % g1, (2) = —log |F(T)|2 — Ch.Dima,ms - logdetn (4)
A (C)

holds for all T € §'(s1, ..., Spt1)-

Proof. Noting that the global sections in question now have weight (m1 +ms/2) instead of 1/2
and that Lo has been replaced by Li™?, Corollary 3.10 asserts that for any 7 € S’(s1, ..., Snt1)

d.ds </ . 917 (2) % oo % gny1.7(2) + Cn.Dimy ms - log det n) =0 (5)
A-(C)

for all 7 sufficiently close to 7/. We conclude that for any open and simply connected subset
U C S'(s1,..., Snt+1) there exists a non-vanishing, holomorphic function Fy; satisfying

/ C 91.7(2) * o * gny1,7(2) + Cn Dimy m, - log detn + log |FU(T)|2 =0
A-(C)

15



for all 7 € U; by the commutativity of the integral over the (n + 1)-fold #-product of Green
currents, the preceding formula holds true with the factors g1, ,(2), ..., gn41,-(2) permuted in an
arbitrary way. We will show now that Fyy extends to a holomorphic function on all of $),,. If we
have codim(7"(s1, ..., Sn+1)) > 2, Fy extends to a holomorphic function F' defined on all of ),
by the Riemann removable singularity Theorem (cf. [12], p. 262) and the simple connectivity
of $,,. On the other hand, if the codimension in question is one, we proceed as follows: Define

U = U Sl(5i17-~-,5in) C N

1<i1 <. <ip <(n41)

further, let D C §,, be an embedded unit disk, let D* be D minus the image of the origin of
that unit disk and assume

(l) D* Q S/(Sl,...78n+1),
(ii) D C S'(8iy, .-+ 8i,, ) for some choice of n indices 1 < i3 < ... < i, <n+1.

Then, for the choice of indices 1 < i3 < ... < i, < n+ 1 made in (ii), denote by Dy, _;..r
the intersection of the n divisors ©;, r,...,0;  .; finally, let i,,11 € {1,...,n + 1} be the index
different from i1, ...,%,. We now derive from Remark 4.6 that the equality (note again that the
global sections in question have weight (m; 4+ ms/2) instead of 1/2, Ly has been replaced by
LE™* and that the set of indices {1,...,n + 1} has been replaced by {iy,...,in+1})

d.ds (/ Girr(2) %% gi 7 (2) + 00 (Mg +m2/2) - my - d-n! logdetn—
A,(C)

Z gin+17T(P) =0

PEDil,...,in:T

holds for all 7 € D. Therefore, there is a non-vanishing, holomorphic function fl()l) on D such
that the equality

/ Gir 7 (2) * ok gin o r(2) - (my +ma/2) -my - d-n! logdetn —
A.(C

S G (P) Hlog [ fS ()P =0 (6)

PeEDiy, . ip;r

holds for all 7 € D. Let now t be a local coordinate on D and let v denote the number of points
in the intersection of D;, . ; .r» with ©; ., -~ at the point 7" € D corresponding to t = 0.
Then, it again follows from Remark 4.6 that there is a non-vanishing, holomorphic function
fg ) on D such that the equality

Z Ginsr,r(P) 4 (m1 +mg2/2) - my - d-n! logdetn +

vlog [t +log | £2 ()2 = 0 (7)

holds for all 7 € D. Adding (6) to (7) defines a holomorphic function Fp on D, which vanishes
only at the point 7/ € D corresponding to ¢ = 0, namely to the positive integral order v, such
that we have for all 7 € D

/ c gi1,T(z) ok gin+1,‘l'(z) + Cn,D;ml,mz . IOg det 1+ 10g |FD(T)|2 =0.
A-(C)
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The above argument implies that for any open and simply connected subset U C U there exists
a holomorphic, not necessarily non-vanishing function Fy; such that

/ . 917 (2) % ... % gny1.7(2) + Cn Dimy m, - log detn + log |FU(7')|2 =0
A (©)

for all 7 € U. By assumption we have codim($, \ ) > 2; hence, again by the Riemann
removable singularity Theorem and the simple connectivity of §,,, Fyy extends to a holomorphic
function F' defined on all of §,,.

Since the integral
[ o)
A (C)
is I'y, p,e-invariant, so is
[F(7)[2 det nCrpimims = exp (10g |F(7)]? + Co,Dymy ams - log det )

Therefore, F' is a Siegel modular form of weight C,, p.m, m, With respect to I';, p e and some
character x. By [22], p. 109, the commutator subgroup [I',.p.e,I'n pe] is of finite in-
dex in I'y, p,e@, which shows that the character x is finite. We have now constructed F' €
Mec,, poymy Tn.p,@,x) such that the claimed formula (4) holds for all 7 € S'(s1, ..., Sn+1).
This finishes the proof of the theorem. |

5.3. Remark. As we shall see in the next corollary, a variation of the proof of Theorem 5.2
leads to an explicit description of the modular form F € Mg (T'w,p,0,X)- If one is only
interested in proving formula (4),

n,Dimq,mo

/ . 917 (2) % oo % gny1.,-(2) = —log |F(7')|2 — Cp,Dima,ms - logdetn,
AL (C)

without any further knowledge about the modular form F in question, J.-B. Bost pointed out
to the authors the following argument: To simplify the exposition we assume that there exist
(n+1) global sections 1, ..., sp4+1 € I'(An,p.0, £) having properly intersecting divisors, i.e., we
assume m; = 0,m2 = 1. Then, g1 * ... * gp41 is a well-defined Green current of type (n,n) on
A, p,e(C) satistying

dd®(g1 # ... # gn41) +0p,,,, = 1 (L, ]| - )™

Taking the direct image of this equation with respect to the proper map = : A, pe — An.n.0
and observing that 7, commutes with dd® and d, we derive

d,,.df_ (W*(gl kX gn+1)) + 571'*Dn+1 = T« (Cl(£7 ” . ||)n+1) .

Now, it is clear that the class of e*£ equals half of the class of K in Pic(Ay,p,e)g and, further-
more, it follows from [3], chapter I, or [17], appendice 2, that the class of det 7, (L@ 7*e* L®71)
equals —d/2 times the class of K, again in Pic(A, p,e)g; this implies that the class of det 7.L
is trivial in Pic(A,, p,e)g. We also note that [18] shows that all of the above is compatible
with the hermitian metrics in question, K being equipped with the Petersson metric || - || per. A
short calculation, using the Hirzebruch-Riemann-Roch Theorem, then gives

mu (e (1)) = 2 e (ot D ea ).
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Therefore, the function m.(g1 * ... * gn41) in question is given as
~log (|F(r)[ - det 0t |

where F € T(An.p.o, K& DY (with divisor m, Dy 1), ie., F is a modular form of weight
k= % -d - (n+1)! with respect to 'y, p.o.

5.4. Corollary. Assume that the hypotheses of Theorem 5.2 hold. Then, the modular form
FeMc, pom,m, (Tn,p,0,X) of Theorem 5.2 is given by the formula

Fry=¢ ] [T sior(p)emmebrer,

1<i1<...<in<n+1 PED;,

where € is a non-zero constant (unique up to multiplication by a complex number of absolute
value one), int1 € {1,...,n + 1} denotes the index different from i1,...,%, and D;, ;. .- the
intersection of the n dwisors ©;, -, ...,0;, - taken for T € 8 (si,,...,s;,) and P € D;,
written as P = —7 - ap + Op.

i, CUREIL JUTT 2 O 94y eeey 95y, ) WG L Ly, In;T 18

Proof. We will vary the proof of Theorem 5.2 slightly: We consider the difference

/AT((C) 91,7(2) % oo % g1+ (2) — Z Z s (P): ®)

1<i1 < <in<n+1 PED;, . inir

by Corollary 3.10 and Remark 4.6 it is harmonic for 7 € §’(s1, ..., Sp+1). Let

U := ﬂ Sl(sila ""Sin) < ﬁn

1<ii<...<ip<n+1
and D C $,, be an embedded unit disk satisfying

(1) D* c Sl(sla"'vsn+1)a
(i) D C U.

Then, we rewrite (8) as

/ IR ARC R DRy

PED, »

- Z Z gin+1,T(P)? (9)

i1 ZN+1 PED:y iyir

where the sum over 7,41 # n + 1 is a shorthand for the sum over all n-tuples 1 < i; < ... <
in, < n+ 1 different from the n-tuple 1,...,n. By considering the difference between the above
integral and the first sum and then the double sum individually, we conclude as in the proof
of Theorem 5.2 using Remark 4.6 that the difference (8) can be expressed as the logarithm of
the absolute value square of some holomorphic function on D, hence on the whole of U. Since
codim($), \ U) > 2, this function extends to a holomorphic function H on all of §),, satisfying

/A © 91.7(2) % oo % g1 0 (2) — Z Z G v r(P) =log |H(T)|.

1<i1 < <in <n+1 PEDG | igir
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Obviously, H must be a modular form of weight 0, i.e., H is a holomorphic modular function,
hence a constant on all of §),,. This constant must be non-zero, since H(7) does not vanish for
7€ 8'(81, ., 8n+1). Now the proof can be easily completed. O

5.5. Remark. The quantity ¢ appearing in Corollary 5.4 is by construction a constant with
respect to 7 € §,,, which depends of course on the choice of the global sections sy, ..., sp11,
i.e., $1,0,...,8n+1,0 under consideration. Here this dependence is determined: First, ¢ is a
symmetric function in sy g, ..., Sn41,0; hence, it suffices to study ¢ as a function of the single
variable s = s,,41 0, while fixing s1 o, ..., Sp,0 such that their divisors intersect properly. Secondly,
the definition of ¢ in the proof of Corollary 5.4 together with formula (9) shows that ¢ is
independent of the scale of s; hence, { can be viewed as a function on the projective space
P := PI'(Ap(C), L?gz). Let P denote the dual projective space of P. Since we may assume
without loss of generality that the line bundle under consideration is very ample, we have an
embedding Ay(C) — P given by mapping P € Ag(C) to the hyperplane Ep € PV determined
by the set of those sections s € P vanishing at P.

By arguing as in section 4, it can be shown that the intersection of div(s) with D, ¢ is
proper, i.e., empty, for all s € P away from a l-codimensional subset £ C P, and that the
intersections D, . ;,..r, are proper for all n-tuples 1 <1i; < ... < i, < n+ 1 different from the
n-tuple 1,...,n for all s € P away from a 2-codimensional subset E' C E C P. For s € P\ E,
the definition of ¢ together with formula (9) leads to the following differential equation

7d5d2 log |<‘2 = d9d§ Z Z gin+1,To(P)'

int17#n+1 PED:y . ip;mg

For s € P\ F’, let N denote the cardinality of the disjoint union of the proper intersections
D;, ...z (counting multiplicities) for all n-tuples 1 < i; < ... < i, <n+ 1 different from the
n-tuple 1, ...,n, namely N = n-mj -d-n!. Furthermore, let A := Symy(A¢(C)) be the N-fold
symmetric product of Ag(C) with itself. Then, we obtain a morphism f : P\ E/ — A, given
by associating to s € P\ E’ the points in the disjoint union of the proper intersections

U Di1,~~~7in;7'0 C A,
int17n+1

again taking into account multiplicities. Since codim(E’) > 2, this morphism extends to a
morphism from P to A, which is again denoted by f. Representing the points P € f(s) by
z(s) = z(s)+iy(s) € C™ (the universal covering of Ay(C)) and using the definition of the Green
current g;, ., -,(2(s)), the above differential equation becomes

—dsdSlog [C]* +n - my - Z O, = Mo - lup
PeDy o
with the (1, 1)-form

pp = didS > 2my(s)'ng 'y (s);
Pef(s)

here, as usual, 79 = &y + ing € Hn. A direct computation yields pp = f*ua, where

N
pa = Y0} (d=dS(2my'ng 'y))

j=1
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with p; : vazl Ap(C) — Ag(C) denoting the projection onto the j-th factor (j =1,..., N). The
translation invariance of the (1, 1)-form d,d¢ (27ryt770_1y) on Ap(C) then implies the invariance
of the (1,1)-forms (p; o f)*(d.dS(2my'ny 'y)) with respect to the action of the unitary group
operating on P; by symmetry, we therefore conclude up = N - ¢/(Lg) - prg, where ¢/(Lp) is a
constant depending only on the line bundle Ly and purg denotes the first Chern form of Op(1)

with respect to the Fubini-Study metric. Hence, we obtain the differential equation

—dydSlog [C|? +n - msy - Z Sgp =N -ma - (Lo) - prs-

PeDy o

In particular, by taking cohomology classes on both sides of the above equation, we derive
' (Lg) = 1. Now, this differential equation can be solved explicitly in terms of the normalized
Green’s function gp( -, -) relative to pupg viewed as a function on P x P¥ (cf. [15], p. 26). Using
the symmetry in s, ..., Sp4+1,0, we finally arrive at the formula

—log[¢[* = ms - > Yo 9e(Sinen0 P)Hmy-d- (n+ 1) e(Lo);

1<i1<...<in<n+1 PED; .. ip;img

here P has to be interpreted as an element of PV by identifying P with the hyperplane Ep,
and ¢(Lg) is a constant depending only on the line bundle L.

5.6. Remark. Theorem 5.2 and Corollary 5.4 have been proven under the assumption that
there exist (n+1) global sections sy, ..., $p+1, which are in general position at 7o € $,,. We now
introduce the following more relaxed condition: For a fixed set of global sections sy, ..., sp41 €
r (An,D,@a M(m17 m2))7 put

unJrl = S/(Sl,...,SnJrl),

Uy, = {7€9,]31<i1=0(1)<..<ip=1in(r)<n+1

such that div(s;, 7), ..., div(s;, ) intersect properly}.

We then call the (n + 1) global sections sy, ..., Sp41 in general position, if

() codim($,, \ Uny1) > 1,
(b) codim($, \ Uy,) > 2.

We show that the statement of Corollary 5.4 holds true assuming this weaker condition. For
this consider the difference

/ gi1(T1),T(Z) ok ginﬂ(n),f(Z) -
A, (C)

/ gin+1,T(Z) A 6Di1 ..... T A QV (10)
A-(C)

1<i1 <. <ip <n+1

for 7 in some transverse disk D around a fixed 7 € U, \ Up41; here v = dim D;, . ;. ... Note
that the set U,, \U,+1 consists of irreducible components and that the integer i,,1(7) is constant
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on each of these components. Now, rewrite (10) as

/A © gi1(7’1),7’(z) ¥k gin+1(7—l);7'(z) - Z gin+1(7—1)77'(P) -

PeD

Z / gin+1,7'(z) A 6Di1 ..... insT A qu
A (C)

i1 7in+1(T1)
where the sum over i, 11 # i,+1(71) is a shorthand for the sum over all n-tuples 1 <i; < ... <
in, < n+1 different from the n-tuple 1 < i1(71) < ... <i,(m1) < n+1. Now one applies Remark
4.6 to the difference between the first integral and the first sum and the fact that the second
integral is bounded from below in order to conclude as in the proof of Corollary 5.4 that the
difference (10) equals the logarithm of the absolute value square of some non-zero constant on
all of $,,. This proves the desired variant of Corollary 5.4. |

5.7. Remark. Theorem 5.2 together with Corollary 5.4 leads to the following determination
of the analytic contribution to the arithmetic degree of line bundles on abelian varieties over
number fields; for the definition of the arithmetic degree of hermitian vector bundles on arith-
metic varieties we refer to [4] or [23]: Suppose that s1,...,sp41 € I' (An,p.e,L), are (n + 1)
global sections, which are defined over @Q and in general position; Remark 4.5 shows that this
is possible, eventually after replacing £ by M (my, ms) and choosing m; >> msy >> 0; to sim-
plify the exposition we assume m; = 0,ms = 1. Let now 7 € S§’(s1, ..., Sn41) be such that the
abelian variety A = A, is defined over some number field K and has good reduction at all the
finite places of the ring of integers Ok of K, i.e., gives rise to an abelian scheme A/Spec Ok.
As usual, let L = L, be the line bundle on A equipped with the smooth hermitian metric || - ||
having translation invariant curvature. Furthermore, denote by L the unique extension of L
to a symmetric, relatively ample line bundle on A satisfying the theorem of the cube (cf. [17],
chapitre IT). Then, the analytic contribution deg.. (L, | - ||) to the arithmetic degree c/k%(L, -1
of L (or rather of L) is given by the formula

1 1
dego (L, | - [I) = 3 Z (1og |F (7)) + 5 d-(n+1)!logdet n(a)) :
o:K—C

here 7(?) € §,, is such that A x, C = A_, and F € M%.d,(nJrl)!(Fn,D}@, X), a modular form,
which is explicitly determined by the formula given in Corollary 5.4. The recent preprint [14]
of K. Kiinnemann shows that the above result can also be applied, if the abelian variety A/K
in question has semi-stable reduction at all the finite places of the ring of integers Ok .

In [13], Proposition 13.1, K. Kiinnemann proves a result which is analogous to ours. He
shows that the analytic contribution to the arithmetic degree in question can be expressed
in terms of classical Thetanullwerte provided that they do not vanish on the abelian schemes
under consideration. We therefore view our application of Theorem 5.2 and Corollary 5.4 as
being supplementary to the result of K. Kiinnemann.

6 Examples

6.1. The case n = 1,d = 1. This example is included here for the sake of completeness; we
also refer to [1] or [10]. We point out that it is not covered by Corollary 5.4 nor the subsequent
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Remark 5.6 because of dimension reasons and since 4 does not divide d. Since D = (1), we
are working here with the universal elliptic surface A; (1) e over the modular curve A; (1) ¢
attached to Igusa’s group I';(1,2) (cf. [7], p. 178) and with the line bundle Ly := L over
Aj,1),e induced by the theta function J(7, z). The functions

sw0r(2)i=0 [ | suse)i=0 | 13 ] (0

then are global sections of the line bundle E%%2 over A; (1),e. Using the integral formula given
in 1.1, we then compute (with the obvious notations)

/ © 911,7(2) * goo,r (2) = / (911,7(2) Aw + goo,r(2) A 5div(sll,f)) =
A,

A,(C)
1 1 2 0 2
—4 log|9 | % | (r,0)| dadB — 4log |9 (1,0)| —4logn =
0 0 ﬁ 0
1 0 ?
—élog|A(T)|2 — 4log |¥ { 0 } (1,0)] —4logn.

Analogously, we could work with the line bundle Ly, resp. L1g, instead of £ over the universal
elliptic surface attached to the congruence subgroup I'°(2), resp. I'g(2), induced by the theta
functions

0 1/2
9 [ 1/2 } (1,2), resp. ¥ [ (/) } (1, 2).
Observing now that

sotr() =0 |y | v smac ()= 0 | 17 ] (o

together with s1; ,(2) are global sections of the line bundle £3?, resp. £, we derive as before

2

1 0
[ e e (2) =~ logl AP oo | ), | (0]~ o,
A.(C) 6 /
respectively
1 1/2 ?
/ 911.7(2) * g10,-(2) = —= log |A(T)|? — 4log |9 { 0 ] (1,0)| —4logn.
A,(C) 6
Adding up, we obtain
/ g11.0(2) * go0.r () + / g11-(2) * gor (2) +
A.(C) A.(C)
[ () 5 gn0r(2) = ~log|A(?  12logn - $log2, (1)
A-(C)

since

¥ (1,0)- 0| )9 | (7,0)-9 (1,0) = 2- A(1)Y/8.
o ool gy Jeoo[ 7]
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6.2. Remark. We complement example 6.1 by showing how the above computations can
be used to derive an explicit formula for the arithmetic degree of hermitian line bundles on
semi-stable elliptic curves: To illustrate the method, we consider for simplicity an elliptic curve
A/Q having multiplicative reduction for one odd prime p, good reduction for the remaining odd
primes and ordinary reduction for the prime 2; furthermore, we assume that the 2-torsion of A is
rational. We denote by A" the minimal discriminant of A; by assumption, we have A" = pn»
with a certain positive integer n,, which in addition will be assumed to be even. An example of
such an elliptic curve A/Q is given by the Tate equation Y2+ XY +Y = X3 — X? -6X —4 with
minimal discriminant A% = 172. We denote by A/Z the Néron model associated to A/Q. By
our assumptions, only the fibre /Ip /Fp of A/Z over the closed point (p) € SpecZ is reducible;
it is given as an n,-gon whose edges are denoted by C, (v =0,...,n, — 1), Cj intersecting the
image of Spec Z by the zero-section. According to [17], chapitre II, the n,-th tensor-power of the
symmetric, ample line bundle L®2? = L®2 on A = A, has a unique extension to a symmetric,
relatively ample line bundle M on A satisfying the theorem of the cube. Allowing rational
multiplicities, the divisor of the global section s1; of L®? is seen to extend to the following

rational divisor on A
np—1

&R’(Sn) = E(Sn) + Z my, - Cy,
v=0

where div(s11) denotes the Zariski closure in A of div(s;1), namely the image of SpecZ by the
zero-section, and the rational multiplicities m, are given by
v(v —np)

v — — :O,..., —1).
m o (v ny )

Since n, is assumed to be even, precisely one of the divisors of the three global sections
500, So1, S10 of L®2 extends to a rational divisor on A with the same vertical part as cﬁf(su)
and with horizontal part being determined by the Zariski closure in A of the corresponding
divisor on the generic fibre A4 of A. The divisors of the remaining two global sections of L®2
then extend to rational divisors on A with horizontal part being given by the Zariski closure
of the corresponding divisor on the generic fibre A of A and with vertical part E:igl ml, - Cy,
where the rational multiplicities m], equal the multiplicities m, up to a cyclic permutation of
the indices determined by the property m;p 2= 0. The intersection number of &7(811) with
the sum cﬁz(soo) + (ﬁ;(sm) + cﬁ;f(slo) is then easily computed to
div(s11) - (div(soo) + div(sg1) + div(slo)) = —2n, + ni
P

Combining the analytical formula (11) together with the above geometric considerations, we
finally arrive at

— 1 — .
deg(L | ) = 5z - deg (T, - 1) =
p

1 1
——log|A(7)| — 3 logn + <—np +

2
1 Z log2;
12 6 12np) o8P+ g8

concerning the determination of the last summand, we used the fact that the intersection of

&Rf(su) with the second rational divisor, which passes through the origin in the fibre Ay /Fy,
is transversal.
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6.3. The case n = 2,d = 1. We point out that this example will not follow directly from
Corollary 5.4 but rather from Remark 5.6; the fact that d is not divisible by 4 does not lead to
serious problems.

Let H denote the 1-codimensional subset of $» consisting of those 7 € $,, which are
diagonalizable with respect to the action of Spy(Z). The entries of 7 € H are the moduli of
abelian surfaces, which are Jacobians of singular curves of genus 2, while the entries of 7 ¢ H
are the moduli of abelian surfaces, which are Jacobians of smooth, projective curves of genus 2
(which are necessarily hyperelliptic).

First, let 7 vary in $)» away from H and denote as usual by A, the corresponding abelian
surface equipped with the line bundle L, associated to the divisor of the theta function ¥(r, z).
For each one of the six odd 2-torsion points P € A, consider the global section

spr(2) i= 9(r, 2 — P)? € T(A,, L&?);

its divisor ©p . contains the origin of A;. In fact, it can be shown by using the Abel-Jacobi
map for curves of genus 2 and the Jacobi inversion formula that ©p . contains precisely six
2-torsion points (each with multiplicity 2). For each one of the remaining ten 2-torsion points
Q ¢ Op, consider the global section sg ,(z) = sp,(z — Q) € I'(A,, L??); its divisor O ,
contains (). Since ©p, and Og . are irreducible and since Q € Og ,, but Q ¢ Op,, the
intersection Op, N Og , is proper, hence consists of two points (each with multiplicity 4),
which are 2-torsion points (use again the Abel-Jacobi map and the Jacobi inversion formula).
By extrapolating from the diagonal case, it can finally be shown that there are four choices for
a 2-torsion point R ¢ Op, U O ; such that the divisor Og , of the global section sg ,(z) :=
spr(z — R) € T(A;, L®?) has proper, i.e., empty intersection with ©p, N Og . With the
notations of Remark 5.6 we conclude Us 2 $2 \ H.

Let now 7 degenerate to a point in D, where D is an irreducible component of H; by
translating D by a suitable element of Sp,(Z), we may assume without loss of generality that
we deal with the component, where 7 is diagonal. We note that each one of the divisors
Opr,00,r,OR,r constructed above then contains a seventh 2-torsion point; this point is just
the singular point on these divisors. By a direct inspection, it can then be shown that either
the three divisors ©p ,, 00 -, Or » have proper, i.e., empty intersection (as in the case 7 ¢ H)
or at least two of them intersect properly (note that, if two of the divisors do not intersect
properly, they have precisely one component in common). In terms of Remark 5.6 this means
that Z/[Q = .62.

For a given triple P, Q, R of 2-torsion points on A, as above, let I'p g r} denote the sub-
group of Spy(Z), consisting of those isomorphisms of A, which fix P, @, R as a set. Since the
sections sp, sq, sg constructed above are in general position, we derive from Remark 5.6 that
there is an explicitly given Siegel modular form Fyp g ry of weight 24 with respect to I'tp g, ry
such that the equality

/ < 9P (2) % 90+ (2) * gr.r(2) = —log | F(po r} (7)|* — 241log det (12)
Ar

holds. Summing now both sides of (12) over the various choices for P,Q, R, one obtains two
sums, which can be subdivided into ten partial sums according to the ten different choices for
Q. Since ¥(7,0) # 0, one possible choice for @ is @ = P; the corresponding partial sum on the
right hand side leads to the Siegel modular form

G(t) = H F{P,P,R}(T)

P,R
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of weight 576 with respect to the subgroup of Sp,(Z), which permutes the six odd 2-torsion
points and stabilizes the origin of A,, hence is nothing but Igusa’s group I's(1,2) (cf. [6],
p. 405). The remaining nine partial sums lead to Siegel modular forms of the same weight,
but with respect to the nine different conjugate subgroups of I's(1,2) inside of Spy(Z) (note
that (Spy(Z) : T'z(1,2)) = 10). Adding up, we obtain a Siegel modular form of weight 5760
with respect to the full modular group Sp,(Z), which vanishes by construction along H. Since
Spo(Z)\H is irreducible and since Igusa’s x10 € Mio(Spa(Z)) (given by the product of the
squares of the ten even theta functions, cf. [6], p. 404) vanishes also precisely along H, we
conclude that

Z / gp.(2) * 90.-(2) * gr.r(2) = =576 1log|c - x10(7)|* — 5760 log det 1,
Po.RYA(C

where ¢ is a suitable non-zero constant. We finish this example by noting that it is closely
related to the explicit computations given in [1], in particular in the Appendix there.

6.4. The case n = 3,d = 1. As the previous example, this example will not follow directly
from Corollary 5.4 but rather from Remark 5.6; again, the fact that d is not divisible by 4 does
not lead to serious problems.

Let ‘H denote the subset of )3 consisting of those 7 € $3, which are the moduli of abelian
threefolds, which are Jacobians of smooth, projective, hyperelliptic curves of genus 3. The
closure H of H is a 1-codimensional subset of $3. The complement OH = ﬁ\ ‘H consists of
those T € $3, which can be put into diagonal block form by means of the action of Sp4(Z).

First, let 7 vary in $3 away from H and denote as usual by A, the corresponding abelian
threefold equipped with the line bundle L, associated to the divisor of the theta function ¥(r, z).
For each one of the 28 odd 2-torsion points P € A, (cf. [20], p. 169) consider the global section

sp.(2) :=9(1,2 — P)* € T(A,, LE?);

its divisor © p » contains the origin of A;. In fact, it can be shown (cf. [21], p. 3.105) that Op ,
contains precisely 28 2-torsion points (each with multiplicity 2). For each one of the remaining
36 2-torsion points Q ¢ O p ., consider the global section sq - (2) := sp,(z — Q) € T'(4,, L¥?);
its divisor ©¢ . contains Q). Since ©p, and O¢g . are irreducible and since Q) € O¢g -, but
@ ¢ Op,, the intersection ©p, N Og . is proper and, by [2], Théoreme 10.12, irreducible.
Using [2] once more, now Corollaire 10.11, one can find another 2-torsion point R € A, such
that the three divisors ©p -, ©¢,;, Or,; intersect properly; here O ; is the divisor of the global
section sg ,(2) = sp,(2 — R) € T'(A,, L®?). We let vr denote the number of possible choices
for R. By extrapolating from the diagonal case, it can be shown that the six points in the
intersection ©Op, N Og - N O . are 2-torsion points (each with multiplicity 8). Furthermore,
one derives from that consideration that there exists a further 2-torsion point S € A, such
that the divisor O, of the global section sg (2) := sp,(z —S) € I'(A,, L®?) has proper, i.e.,
empty intersection with ©p, NOg . N O .. We let vg denote the number of possible choices
for S. With the notations of Remark 5.6 we conclude Uy D $3 \ H.

Let now 7 degenerate to a point in 7. We note that each one of the divisors ©p ., 0¢ -, Or. -,
Og,; constructed above then contains a 29th 2-torsion point (cf. [21], p. 3.105). As in
the preceding example it can be shown by a direct inspection that either the four divisors
Op:,00,,0Rr,,Og, have proper, i.e., empty intersection (as in the case 7 ¢ H) or at least
three of them intersect properly. In terms of Remark 5.6 this means that Us = 93.

For a given quadruple P, Q, R, S of 2-torsion points on A as above, let I'tp o r 5} denote the
subgroup of Sps(Z), consisting of those isomorphisms of A, which fix P,Q, R, S as a set. Since
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the sections sp, sg, Sgr, sg constructed above are in general position, we derive from Remark
5.6 that there is an explicitly given Siegel modular form Fyp g g ) of weight 192 with respect
to I'tp q,r,sy such that the equality

/A o 9P, (2) % 9Q.r(2) * gr,r (2) * 95,0 (2) = —1og |[Fipq,r,5)(7)|* — 192logdetn  (13)

holds. Summing now both sides of (13) over the various choices for P, Q, R, S, one obtains two
sums, which can be subdivided into 36 partial sums according to the 36 different choices for
Q. Since ¥(7,0) # 0, one possible choice for Q) is @ = P; the corresponding partial sum on the
right hand side leads to the Siegel modular form

G(r) := H Fipprsy(T)

P,R,S

of weight v = 28 - vg - vg - 192 with respect to the subgroup of Sp5(Z), which permutes the 28
odd 2-torsion points and stabilizes the origin of A, hence is nothing but Igusa’s group I's(1,2)
(cf. [24], p. 793). The remaining 35 partial sums lead to Siegel modular forms of the same
weight, but with respect to the 35 different conjugate subgroups of I'3(1,2) inside of Sps(Z)
(note that (Sps(Z) : T'3(1,2)) = 36). Adding up, we obtain a Siegel modular form of weight
36 - v with respect to the full modular group Sps(Z), which vanishes by construction along H.
Since Sp;(Z)\'H is irreducible and since Igusa’s x15 € Mis(Sps(Z)) (given by the product of
the 36 even theta functions, cf. [24], p. 814) vanishes also precisely along H, we conclude that

> / 9P (2) * 90 ~(2) * grr(2) * g5+ (2) = —2wlog |c - xa5(7)[2 — 36vlog det 7,
P.Q.R,5 Y A (C)

where ¢ is a suitable non-zero constant.
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