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Abstract

In this paper we analyze the integral of the star-product of (n+1) Green currents associated
to (n + 1) global sections of an ample line bundle equipped with a translation invariant
metric over an n-dimensional, polarized abelian variety. The integral is shown to equal
the logarithm of the Petersson norm of a certain Siegel modular form, which is explicitly
described in terms of the given data. This result can be interpreted as evaluating an
archimedian height on a family of polarized abelian varieties. The key ingredient to the
proof of the main formula is a ddc-variational formula for the integral under consideration.
In the case of dimensions n = 1, 2, 3 explicit examples in terms of classical Riemann theta
functions are given.

Mathematics Subject Classification (1991): 11F46, 11G10, 14K25, 31B05.

1 Introduction

1.1. A little known, yet important, formula in the study of theta functions of one variable is
the following. Let

ϑ

[
α
β

]
(τ, z) =

∞∑
m=−∞

eπi(m+α)2τ+2πi(m+α)(z+β)

be the theta function with characteristics α, β ∈ R and variables τ ∈ H1, the upper half-plane,
and z ∈ C. Let ∆(τ) be defined by

∆(τ) = e2πiτ
∞∏

m=1

(
1− e2πimτ

)24
,

which is (up to scaling) the unique cusp form of weight 12 with respect to the modular group
SL2(Z). Then, we have the formula∫ 1

0

∫ 1

0

log
∣∣∣∣ϑ [ α

β

]
(τ, 0)

∣∣∣∣2 dα dβ =
1
24

log |∆(τ)|2 .

∗The first author acknowledges support from NSF grant DMS-93-07023 and from a Sloan fellowship; the
second author would like to express his thanks to G. Wüstholz for the invitation to the FIM at the ETH in
Zurich (Switzerland), which was very inspiring for the preparation of this manuscript.
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One proof of this result follows from the product expansion for the theta function, viewed as a
function of one complex variable z ∈ C (cf. [20]). A second proof follows from an analysis of
the integral: namely, one uses the differential operator dτdc

τ to show that the integral defines a
harmonic function on the simply connected space H1, hence is equal to the log-modulus square
of some non-vanishing holomorphic function f on H1. A further analysis shows that f24 is a
cusp form of weight 12 with respect to the modular group SL2(Z), so f24 = c · ∆ for some
constant c, which then turns out to be given by c = 1 (cf. also [1] or [10]).

1.2. In this note a generalization of the above theta function relation to polarized abelian
varieties of arbitrary dimension n ≥ 1 is provided. Namely, in contrast to the 1-dimensional
situation, the divisor of the theta function

ϑ

[
α
β

]
(τ, z) =

∑
m∈Zn

eπi(m+α)tτ(m+α)+2πi(m+α)t(z+β) (1)

moves in general, as one varies τ ∈ Hn, the Siegel upper half-space. Therefore, the local
variation dτdc

τ of the integral∫ 1

0

...

∫ 1

0

log
∣∣∣∣ϑ [ α

β

]
(τ, 0)

∣∣∣∣2 dα1...dαndβ1...dβn

does not vanish unless n = 1. Here these local variations for integrals of the above and of a
similar type are calculated.

1.3. These local computations together with some global argument lead to the following results:
Let ϑ(τ, z) be the theta function (1) with characteristics α = β = 0 and let An,D,Θ denote the
moduli space of n-dimensional abelian varieties of polarization type D equipped with the fixed
divisor given by the theta function ϑ(τ, z). Let L denote the line bundle on the universal
abelian variety An,D,Θ over An,D,Θ induced by the theta function ϑ(τ, z) and being equipped
with the smooth hermitian metric ‖ · ‖ having translation invariant curvature. Then, (n + 1)
global sections s1, ..., sn+1 of L (eventually, L has to be replaced by some tensor-power of it
multiplied by the pull-back of some line bundle on An,D,Θ) are constructed such that their
restrictions s1,τ , ..., sn+1,τ intersect properly on the abelian variety Aτ (C) = Cn/(τZn ⊕DZn)
with τ ranging over the complement of a 1-codimensional subset of An,D,Θ(C). In the domain
under consideration the integral over the (n+1)-fold ∗-product of the Green currents gj,τ (z) =
− log ‖sj,τ (z)‖2 (j = 1, ..., n + 1) then turns out to be given by the formula∫

Aτ (C)

g1,τ (z) ∗ ... ∗ gn+1,τ (z) = − log |F (τ)|2 − k · log det Imτ,

where F is a Siegel modular form of weight k = 1
2 · det D · (n + 1)!. A refinement of the proof

of the above result leads to an explicit formula for F in terms of the given data. In particular,
if we restrict ourselves in the domain under consideration to the set of those abelian varieties
A = Aτ , which are defined over some number field K and have semi-stable reduction at all the
finite places of the ring of integers OK of K, the analytic contribution deg∞(L, ‖ · ‖) to the
arithmetic degree d̂eg(L, ‖ · ‖) of the hermitian line bundle (L, ‖ · ‖) (or rather, of its unique
cubical extension (L̃, ‖ · ‖) to the Néron model Ã/OK) induced by (L, ‖ · ‖) is essentially given
by the above integral, namely we have the formula

deg∞(L, ‖ · ‖) = −1
2

∑
σ:K↪→C

(
log |F (τ (σ))|2 +

1
2
· det D · (n + 1)! · log det Imτ (σ)

)
,
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the sum being taken over all embeddings from K to C and τ (σ) ∈ Hn being defined by A×σ C =
Cn/(τ (σ)Zn⊕DZn). Of course, it has to be pointed out that the analytic part of the arithmetic
degree depends on the choice of the sections under consideration, while the arithmetic degree
itself is independent of that choice. In the special case of semi-stable elliptic curves A/Q, a
geometric computation together with the knowledge of deg∞(L, ‖·‖) leads to an explicit formula
for the arithmetic degree d̂eg(L, ‖ · ‖).

1.4. After a short review of some preliminaries in section 2, we perform in section 3 the compu-
tations of the local variations of the integrals mentioned in 1.2; the main result here is contained
in Proposition 3.9. In section 4, in particular in Proposition 4.4, we provide the necessary alge-
braic geometric background in order to be able to globalize the results of section 3. In section 5,
Theorem 5.2 and Corollary 5.4, we then prove the results mentioned in 1.3 concerning the com-
putation of the integral over the (n + 1)-fold ∗-product of Green currents. In section 6, we give
some examples illustrating how Corollary 5.4 leads to explicit formulas.

1.5. We would like to thank J.-B. Bost and C. Soulé for their interest in the subject and very
stimulating discussions. Furthermore, we point out to K. Köhler’s preprint [9], which - from
the point of view of the arithmetic Riemann-Roch Theorem - is complementary to the approach
provided by this paper.

2 Preliminaries

2.1. Abelian varieties. We denote by A an n-dimensional abelian variety of polarization type
D = diag(d1, ..., dn), where d1, ..., dn are natural numbers satisfying dj |dj+1 (j = 1, ..., n − 1),
defined over some field K ⊆ C; we set d := det(D) = d1 · ... · dn. For arithmetic applications
we will restrict ourselves in parts of sections 5 and 6 to polarized abelian varieties A/K, K a
number field, having semi-stable reduction at all the finite places of the ring of integers OK of
K.

The complex points A(C) of A constitute the n-dimensional, complex torus Cn/(τZn ⊕
DZn), where τ is an element of the Siegel upper half-space Hn of degree n. In the sequel, the
dependence of A (and objects related to A) on τ will be indicated by adding τ as an index,
e.g., by writing Aτ for A, etc.. We note that the paramodular group Γn,D, defined by

Γn,D :=
{

R =
(

aR bR

cR dR

)
∈ M2n(Z)

∣∣R( 0 D
−D 0

)
Rt =

(
0 D
−D 0

)}
,

acts properly and discontinuously on Hn by the formula

τ 7→ R(τ) := (aRτ + bRD)(D−1cRτ + D−1dRD)−1,

and we have Aτ (C) ∼= Aτ ′(C), if and only, if τ ′ = R(τ) for some R ∈ Γn,D (cf. [7], chapter V,
or [16], chapter 8).

We denote by L = Lτ the symmetric and ample line bundle on A = Aτ associated to the
divisor of the theta function

ϑ(τ, z) := ϑ

[
0
0

]
(τ, z) =

∑
m∈Zn

eπimtτm+2πimtz.
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We equip the complex line bundle Lτ,C = Lτ ⊗K C with the smooth hermitian metric ‖ · ‖,
which has translation invariant curvature; it is unique up to scaling by a positive real number.
The norm of a section sτ of Lτ is explicitly given by the formula

‖sτ (z)‖2 = |sτ (z)|2e−2πytη−1y det η1/2;

here τ = ξ + iη ∈ Hn and z = x + iy ∈ Cn. The Green current gτ associated to the section
sτ then becomes gτ (z) = − log ‖sτ (z)‖2, and, with dc

z = (4πi)−1(∂z − ∂z), we easily compute
dzd

c
zgτ + δdiv(sτ ) = ω with the (1, 1)-form ω = i

2 dzt · η−1 ∧ dz̄. We note that the n-fold wedge
product Ωn :=

∧n
ω is the standard volume form on Aτ (C), up to a factor n!; namely, we have

Ωn = (−1)n(n−1)/2 in 2−n n! det η−1 dz1 ∧ ... ∧ dzn ∧ dz̄1 ∧ ... ∧ dz̄n

= n! det η−1 dx1 ∧ dy1 ∧ ... ∧ dxn ∧ dyn.

2.2. Moduli spaces. We denote by An,D the moduli space of n-dimensional abelian varieties
of polarization type D. Furthermore, we denote by An,D,Θ the moduli space of n-dimensional
abelian varieties of polarization type D equipped with the symmetric and ample line bundle
associated to the divisor of the theta function ϑ(τ, z); An,D,Θ is a finite covering of An,D. In
general, An,D,Θ is a smooth algebraic stack defined over Q (cf. [19], chapter 7; for the field of
definition, cf. e.g., [7], chapters IV, V); by a Lemma of Serre, it is a smooth and quasi-projective
scheme defined over Q provided d1 ≥ 3. In fact, it follows as in [3], chapter V, that An,D,Θ can
be defined over Z[1/d].

Let π : An,D,Θ → An,D,Θ be the universal abelian scheme over An,D,Θ. If 4|d1, the divisor of
the theta function ϑ(τ, z) descends to give rise to a symmetric and relatively ample line bundle
L on An,D,Θ restricting to the prescribed symmetric and ample line bundle on the abelian
variety in question, i.e., for x ∈ An,D,Θ and Aτ

∼= π−1(x), the restriction L|Aτ is equal to Lτ .
From now on, we make the assumption 4|d1 throughout sections 2 to 5; in the last section
we will relax this assumption slightly. As a further ingredient we also need the canonical line
bundle K on An,D,Θ given by the pull-back of the determinant of the relative cotangent bundle
Ω1

An,D,Θ/An,D,Θ
via the zero-section e : An,D,Θ → An,D,Θ.

By the theory of toroidal compactifications (cf. [3], chapters V, VI) there exist smooth
compactifications of An,D,Θ, resp. An,D,Θ, given by smooth and projective schemes An,D,Θ,
resp. An,D,Θ, together with a proper morphism π : An,D,Θ → An,D,Θ extending π, everything
being defined over Q (or even Z[1/d]). By the method of toroidal embeddings K extends to a
line bundle K on An,D,Θ and L extends to a relatively ample line bundle L on An,D,Θ. As in
[11], Theorem 2.12(ii), in the case of principal polarizations, using the results of [3], chapter V,
it is possible to prove that the invertible sheaf M(m1, m2) := π∗K⊗m1 ⊗ L⊗m2 is very ample
provided m1 >> m2 >> 0. The local triviality of K on the base An,D,Θ implies that, for
x ∈ An,D,Θ and Aτ

∼= π−1(x), the restriction M(m1, m2)|Aτ
is equal to L⊗m2

τ .
Analytically, An,D,Θ has the following description (cf. [7], chapter V, or [16], chapter 8):

An,D,Θ(C) = Γn,D,Θ\Hn, where

Γn,D,Θ :=
{

R ∈ Γn,D

∣∣R =
(

1 + Da Db
Dc 1 + Dd

)
;

a, b, c, d ∈ Mn(Z)
b, c even diagonals

}
.

3 Local computations

3.1. Notations. Throughout this section we make the following hypothesis: We let A0 := Aτ0

be a fixed, n-dimensional abelian variety of polarization type D defined over some field K ⊆ C
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such that the complex line bundle L0,C := Lτ0,C under consideration (cf. 2.1) has (n+1) global
sections s1,0 := s1,τ0 , ..., sn+1,0 := sn+1,τ0 , whose divisors intersect properly on A0(C).

The condition of proper intersection being open, we know that there exists an open Hausdorff
neighbourhood U0 of τ0 ∈ Hn such that the (n + 1) global sections sk,0 extend for all τ ∈ U0

to (n + 1) global sections sk,τ of Lτ,C with properly intersecting divisors on Aτ (C). For k =
1, ..., n + 1, we then put

Θk,τ := div(sk,τ ) , Θk,0 := Θk,τ0 ;

Dk,τ := Θ1,τ · ... ·Θk,τ , Dk,0 := Dk,τ0 .

We make the convention D0,τ := Aτ (C) and D0,0 := D0,τ0 .

3.2. Lemma. With the above notations and m = 1, ..., n+1, the m-fold ∗-product g1,τ ∗ ...∗gm,τ

of the Green currents gk,τ (z) = − log ‖sk,τ (z)‖2 is given by the formula

g1,τ ∗ ... ∗ gm,τ =
m∑

k=1

gk,τ ∧ δDk−1,τ
∧ Ωm−k, (2)

where Ωk denotes the k-fold wedge product of the (1, 1)-form ω with itself and Ω0 := 1.

Proof. We proceed by induction on m. For m = 2 we have g1,τ ∗ g2,τ = g1,τ ∧ ω + g2,τ ∧ δΘ1,τ
,

which coincides with (2). Therefore, we may assume that (2) is proven for m ∈ {1, ..., n} and
we have to establish the corresponding formula for m + 1. By the definition of the ∗-product
we find

(g1,τ ∗ ... ∗ gm,τ ) ∗ gm+1,τ = (g1,τ ∗ ... ∗ gm,τ ) ∧ ω + gm+1,τ ∧ δDm,τ
=

m∑
k=1

gk,τ ∧ δDk−1,τ
∧ Ωm−k ∧ ω + gm+1,τ ∧ δDm,τ =

m+1∑
k=1

gk,τ ∧ δDk−1,τ
∧ Ωm+1−k.

2

3.3. Lemma. With the above notations and k = 1, ..., n + 1, the integrals

cn,D;k,τ :=
1
2

∫
Dk−1,τ

Ωn+1−k

depend only on n and the polarization type D, i.e., are independent of k and τ ∈ U0, and are
given by

cn,D :=
1
2
· d · n! =

1
2
· d1 · ... · dn · n!.

Proof. By the de Rham Theorem we can interpret the integrals cn,D;k,τ as the intersection
numbers

cn,D;k,τ =
1
2
Dk−1,τ ·Θn+1−k

1,τ ,

noting that Ωn+1−k is the (n + 1 − k)-fold wedge product of the (1, 1)-form ω and that the
latter is the first Chern form of Lτ,C. By linear, hence numerical, equivalence, we then have

cn,D;k,τ =
1
2
Θk−1

1,τ ·Θn+1−k
1,τ =

1
2
Θn

1,τ .

The result now follows from [16], Corollary 10.5(d). 2
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3.4. Remark. For the subsequent considerations it will be very useful to replace the complex
variable z ∈ Cn by the real variables α, β ∈ Rn, where z = −τ · α + β. The (1, 1)-form
ω then simply equals ω′ = dα1 ∧ dβ1 + ... + dαn ∧ dβn = dαt ∧ dβ and becomes therefore
independent of τ . More generally, we denote the differential form corresponding to Ωk under
the above change of variables by Ω′k; finally, we put Ω′0 := 1. In particular, Ω′n is given by
Ω′n = n! dα1 ∧ dβ1 ∧ ... ∧ dαn ∧ dβn.

With z = −τ · α + β the (n + 1) sections sk,τ (z) (being linear combinations of the theta
functions with characteristics in D−1Zn/Zn) give rise to smooth functions s′k,τ (α, β), defined
through the equation

s′k,τ (α, β) · e−πiαtτα+2πiαtβ = sk,τ (z).

One easily checks that
‖sk,τ (z)‖2 = |s′k,τ (α, β)|2 det η1/2.

We put g′k,τ (α, β) := − log |s′k,τ (α, β)|2 and note that the functions g′k,τ (α, β) are harmonic in
τ away from Θk,τ . The Green currents gk,τ (z) can now be written as gk,τ (z) = − 1

2 log det η +
g′k,τ (α, β).

3.5. Further notations. Eventually, after a resolution of singularities, A0(C) can locally
be identified with Cn, with coordinates w = (w1, ..., wn), such that Θk,0 is described by the
equation wk = 0 and Dk,0 by the equations w1 = ... = wk = 0; by abuse of notation, we denote
the latter subsets of Cn again by Θk,0, resp. Dk,0 (k = 1, ..., n). For suitable ε > 0, we define
the following tubular neighbourhoods Θ(ε)

k of Θk,0, resp. D
(ε)
k of Dk,0 (k = 1, ..., n):

Θ(ε)
k := {w = (w1, ..., wn) ∈ Cn| |wk|2 < ε2}, resp.

D
(ε)
k := {w = (w1, ..., wn) ∈ Cn| |w1|2 + ... + |wk|2 < ε2}.

We denote the differential form on Cn induced by Ω′k under the above identification by Ω̃k

(k = 0, ..., n).
Following [5], p. 80, we then define for the cycles Θk,0, resp. Dk,0, the functions fΘk,0 on

Θ(ε)
k , resp. fDk,0 on D

(ε)
k , by

fΘk,0(w) := log |wk|2 (k = 1, ..., n), resp.

fDk,0(w) := − 4π

(2k − 2)γ2k
· (|w1|2 + ... + |wk|2)1−k (k = 2, ..., n),

where γ2k is the volume of the unit sphere in Ck, i.e., γ2k = 2πk/(k − 1)! ; we further put
fD1,0 := fΘ1,0 . These functions have the property that for any smooth function h on Θ(ε)

k , resp.
D

(ε)
k , we have∫

Θ
(ε)
k

h(w) ∧ δΘk,0 ∧ Ω̃n−1 =
∫

Θ
(ε)
k

h(w) ∧ dwdc
wfΘk,0(w) ∧ Ω̃n−1 (k = 1, ..., n), resp.∫

D
(ε)
k

h(w) ∧ δDk,0 ∧ Ω̃n−k =
∫

D
(ε)
k

h(w) ∧ dwdc
wfDk,0(w) ∧ Ω̃n−1 (k = 2, ..., n).

For τ ∈ U0, the above local identification of A0(C) with Cn leads to a local identification of
Aτ (C) with (the same) Cn such that Θk,τ is described by the equation wk = pk(τ) and Dk,τ
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by the equations w1 = p1(τ), ..., wk = pk(τ) for certain holomorphic functions p1(τ), ..., pk(τ)
satisfying p1(τ0) = ... = pk(τ0) = 0; by abuse of notation, we denote the latter subsets of Cn

again by Θk,τ , resp. Dk,τ (k = 1, ..., n). By choosing the neighbourhood U0 and ε > 0 suitably,
we may assume that Θk,τ , resp. Dk,τ , vary within the thickenings Θ(ε)

k , resp. D
(ε)
k .

As before, we can now define distribution functions fΘk,τ
on Θ(ε)

k for Θk,τ , resp. fDk,τ
on

D
(ε)
k for Dk,τ , when τ varies in the neighbourhood U0, namely

fΘk,τ
(w) := log |wk − pk(τ)|2 (k = 1, ..., n), resp.

fDk,τ
(w) := − 4π

(2k − 2)γ2k
· (|w1 − p1(τ)|2 + ... + |wk − pk(τ)|2)1−k (k = 2, ..., n);

again we put fD1,τ
:= fΘ1,τ

. The functions fΘk,τ
, resp. fDk,τ

, satisfy the same type of inte-
gration formulae as the functions fΘk,0 , resp. fDk,0 , with δΘk,0 , resp. δDk,0 , replaced by δΘk,τ

,
resp. δDk,τ

. It is important to observe that the functions fΘk,τ
, resp. fDk,τ

, are defined on the
fixed sets Θ(ε)

k , resp. D
(ε)
k , which are independent of τ ∈ U0.

3.6. Remark. By means of the local identification of Aτ (C) with Cn made in 3.5, the (n + 1)
functions s′k,τ (α, β), resp. g′k,τ (α, β), of Remark 3.4 give rise to functions s̃k,τ (w), resp. g̃k,τ (w),
on Cn. Again, we note that the functions g̃k,τ (w) are harmonic in τ away from Θk,τ and that
the Green currents gk,τ (z) can be written as gk,τ (z) = − 1

2 log det η + g̃k,τ (w).

3.7. Lemma. With the above notations, we have for k = 2, ..., n + 1∫
D

(ε)
k−1

g̃k,τ (w) ∧ δDk−1,τ
∧ Ω̃n+1−k =

∫
D

(ε)
k−1

g̃k,τ (w) ∧ dwdc
wfDk−1,τ

(w) ∧ Ω̃n−1.

Proof. For large T , define g
(T )
k,τ to be a smoothening of the function min{g̃k,τ , T} such that for

each w ∈ D
(ε)
k−1, we have

g
(T1)
k,τ (w) ≤ g

(T2)
k,τ (w),

if T1 ≤ T2. By the definition of the function fDk−1,τ
, we have∫

D
(ε)
k−1

g
(T )
k,τ (w) ∧ δDk−1,τ

∧ Ω̃n+1−k =
∫

D
(ε)
k−1

g
(T )
k,τ (w) ∧ dwdc

wfDk−1,τ
(w) ∧ Ω̃n−1.

We now apply the monotone convergence theorem to conclude the stated result. 2

3.8. Lemma. With the above notations, we have for k = 2, ..., n

dτdc
τ

∫
D

(ε)
k−1

fDk−1,τ
(w) ∧ δΘk,τ

∧ Ω̃n−1 = dτdc
τ

∫
D

(ε)
k

fDk,τ
(w) ∧ Ω̃n. (3)

Proof. Assume first k > 2. We begin by rewriting the right hand side integral of the claimed
formula (3): For this we first integrate with respect to the variable wk, keeping all the other
variables fixed. The corresponding region of integration is a disk of the form ∆k = {wk ∈
C | |wk| < εk} (ε2

k = ε2 −
∑k−1

j=1 |wj |2), which we parametrize by the polar coordinates wk −
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pk(τ) = ρeiϕ; note that the radius ρ is a function of the angle ϕ. With this notation we need
to evaluate the integral

− 4π

(2k − 2)γ2k

∫ 2π

0

∫ ρ(ϕ)

0

ρ dρdϕ

(|w1 − p1(τ)|2 + ... + |wk−1 − pk−1(τ)|2 + ρ2)k−1
.

Integrating with respect to ρ, this integral becomes

− 4π

(2k − 2)γ2k
· 1
2(−k + 2)

∫ 2π

0

(|w1 − p1(τ)|2 + ... + |wk−1 − pk−1(τ)|2 + ρ2)−k+2
∣∣∣ρ(ϕ)

0
dϕ;

using the recursion formula γ2k/γ2k−2 = π/(k − 1), the above integral can be rewritten as

2
(2k − 4)γ2k−2

∫ 2π

0

(|w1 − p1(τ)|2 + ... + |wk−1 − pk−1(τ)|2 + ρ(ϕ)2)2−kdϕ−

4π

(2k − 4)γ2k−2
· (|w1 − p1(τ)|2 + ... + |wk−1 − pk−1(τ)|2)2−k.

To complete the computation of the integral in question, we now have to integrate the above
two summands with respect to the variables w1, ..., wk−1 together with the additional variables
wk+1, ..., wn. It turns out that the corresponding integral over the second summand equals∫

D
(ε)
k−1

fDk−1,τ
(w) ∧ δΘk,τ

∧ Ω̃n−1,

which is precisely the left hand side integral of the claimed formula (3). To complete the proof of
the Lemma, we therefore need to show that the corresponding integral over the first summand
is harmonic in τ .

Recall that the thickening D
(ε)
k is by construction independent of τ ∈ U0. For any angle

ϕ, the quantity ρ(ϕ) is the distance from pk(τ) to a point at the boundary of ∆k, which is in
fact a point on the boundary of D

(ε)
k ; we can write ρ(ϕ) = |a(ϕ, ε) − pk(τ)|, where a(ϕ, ε) is

independent of τ . Therefore, for every ϕ, the integrand in question is bounded, hence harmonic
for τ ∈ U0, with range of integration being independent of τ . Consequently, we can interchange
the operator dτdc

τ with the corresponding integration and conclude that the integral over the
first summand is harmonic in τ as claimed.

The case k = 2 is treated in an analogous way by using the explicit formulae for fD1,τ
= fΘ1,τ

and fD2,τ . 2

3.9. Proposition. Let {Um}M
m=1 be a complete set of subcubes of A0(C) determined by torsion

points such that within each subcube Um the local identifications of 3.5 are valid. Then, with the
above notations, we have the following variational formulae for τ ∈ U0 (recall cn,D = 1

2 · d ·n!):
(a)

dτdc
τ

∫
Aτ (C)

g1,τ (z) ∧ Ωn + cn,D · dτdc
τ log det η = −dτdc

τ

M∑
m=1

∫
Θ

(ε)
1 ∩Um

fΘ1,τ
(w) ∧ Ω̃n.

(b) For k = 2, ..., n we have

dτdc
τ

∫
Aτ (C)

gk,τ (z) ∧ δDk−1,τ
∧ Ωn+1−k + cn,D · dτdc

τ log det η =

dτdc
τ

M∑
m=1

∫
D

(ε)
k−1∩Um

fDk−1,τ
(w) ∧ Ω̃n − dτdc

τ

M∑
m=1

∫
D

(ε)
k
∩Um

fDk,τ
(w) ∧ Ω̃n + Hk,τ (ε),
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where lim
ε→0

Hk,τ (ε) = 0.

(c)

dτdc
τ

∫
Aτ (C)

gn+1,τ (z) ∧ δDn,τ ∧ Ω0 + cn,D · dτdc
τ log det η =

dτdc
τ

M∑
m=1

∫
D

(ε)
n ∩Um

fDn,τ
(w) ∧ Ω̃n + Hn+1,τ (ε),

where lim
ε→0

Hn+1,τ (ε) = 0.

Proof. (a) By Remark 3.4 we have g1,τ (z) = − 1
2 log det η + g′1,τ (α, β), hence

dτdc
τ

∫
Aτ (C)

g1,τ (z) ∧ Ωn =

−cn,D · dτdc
τ log det η + dτdc

τ

∫
Rn/Zn⊕Rn/DZn

g′1,τ (α, β) ∧ Ω′n.

To compute the variation of the latter integral, we decompose it as follows, using Remark 3.6

dτdc
τ

∫
Rn/Zn⊕Rn/DZn

g′1,τ (α, β) ∧ Ω′n =

dτdc
τ

M∑
m=1

∫
Um\(Θ(ε)

1 ∩Um)

g̃1,τ (w) ∧ Ω̃n + dτdc
τ

M∑
m=1

∫
Θ

(ε)
1 ∩Um

g̃1,τ (w) ∧ Ω̃n.

The variation of the integral over the region Um \ (Θ(ε)
1 ∩ Um) is zero, since the region of

integration is independent of τ ∈ U0 and the integrand is harmonic in τ away from Θ1,τ .
Therefore, we obtain

dτdc
τ

∫
Aτ (C)

g1,τ (z) ∧ Ωn + cn,D · dτdc
τ log det η = dτdc

τ

M∑
m=1

∫
Θ

(ε)
1 ∩Um

g̃1,τ (w) ∧ Ω̃n =

dτdc
τ

M∑
m=1

∫
Θ

(ε)
1 ∩Um

(
g̃1,τ (w) + fΘ1,τ

(w)
)
∧ Ω̃n − dτdc

τ

M∑
m=1

∫
Θ

(ε)
1 ∩Um

fΘ1,τ
(w) ∧ Ω̃n.

Again, the variation of the first integral is zero, since the region of integration is independent
of τ ∈ U0 and the integrand is harmonic in τ . Hence, we arrive at the formula

dτdc
τ

∫
Aτ (C)

g1,τ (z) ∧ Ωn + cn,D · dτdc
τ log det η = −dτdc

τ

M∑
m=1

∫
Θ

(ε)
1 ∩Um

fΘ1,τ
(w) ∧ Ω̃n,

as claimed.
(b) For k = 2, ..., n we set

Ik,τ :=
∫

Aτ (C)

gk,τ (z) ∧ δDk−1,τ
∧ Ωn+1−k.

9



Writing Ik,τ as a sum of integrals over the subcubes under consideration and substituting
gk,τ (z) = − 1

2 log det η + g̃k,τ (w) as in Remark 3.6, we find, using Lemma 3.3

Ik,τ = −cn,D · log det η +
M∑

m=1

∫
D

(ε)
k−1∩Um

g̃k,τ (w) ∧ δDk−1,τ
∧ Ω̃n+1−k.

By applying Lemma 3.7, we obtain

Ik,τ = −cn,D · log det η +
M∑

m=1

∫
D

(ε)
k−1∩Um

g̃k,τ (w) ∧ dwdc
wfDk−1,τ

(w) ∧ Ω̃n−1.

Next we integrate the above integral by parts twice in order to obtain the formula

Ik,τ = −cn,D · log det η −
M∑

m=1

∫
∂(D

(ε)
k−1∩Um)

g̃k,τ (w) ∧ dc
wfDk−1,τ

(w) ∧ Ω̃n−1+

M∑
m=1

∫
∂(D

(ε)
k−1∩Um)

dc
wg̃k,τ (w) ∧ fDk−1,τ

(w) ∧ Ω̃n−1+

M∑
m=1

∫
D

(ε)
k−1∩Um

dwdc
wg̃k,τ (w) ∧ fDk−1,τ

(w) ∧ Ω̃n−1.

Let us now examine the three integrals in the above expression, beginning with the two bound-
ary integrals over ∂(D(ε)

k−1 ∩ Um) = (∂D
(ε)
k−1 ∩ Um) ∪ (D(ε)

k−1 ∩ ∂Um). First, we note that both

integrals over the boundary piece D
(ε)
k−1 ∩ ∂Um will vanish after summing over m = 1, ...,M ,

since all normal vectors involved appear in pairs with opposite directions. Hence, we are left
to consider the two integrals over the boundary piece ∂D

(ε)
k−1 ∩ Um. For this we set

Hk,τ (ε) := −dτdc
τ

M∑
m=1

∫
∂D

(ε)
k−1∩Um

g̃k,τ (w) ∧ dc
wfDk−1,τ

(w) ∧ Ω̃n−1

+dτdc
τ

M∑
m=1

∫
∂D

(ε)
k−1∩Um

dc
wg̃k,τ (w) ∧ fDk−1,τ

(w) ∧ Ω̃n−1.

Since the region of integration in the above two integrals is independent of τ , let us interchange
the differentiation dτdc

τ with the integration over ∂D
(ε)
k−1 ∩Um. Expanding g̃k,τ (w) in the form

g̃k,τ (w) = − log |wk − pk(τ)|2 + log |hk,τ (w)|2

with hk,τ (w) a non-vanishing, holomorphic function on D
(ε)
k−1 ∩ Um, we observe that replacing

g̃k,τ (w) by − log |wk−pk(τ)|2, changes Hk,τ (ε) only by Oτ (ε). Therefore, in studying Hk,τ (ε) up
to the order Oτ (ε), we may substitute g̃k,τ (w) by − log |wk − pk(τ)|2. Using then Leibniz’ rule
twice in order to compute dτdc

τ and setting τ = τ0, we obtain eight integrals over ∂D
(ε)
k−1 ∩Um.

Observing that − log |wk − pk(τ0)|2 = − log |wk|2 and fDk−1,0(w) are even functions and that
each of the eight integrands in question contains exactly three derivatives, we conclude that in
all eight cases the integral vanishes as an integral of an odd function over a symmetric region.
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Finally, we obtain Hk,τ0(ε) = Oτ0(ε), and hence Hk,τ (ε) = Oτ (ε) by continuity with respect to
τ , i.e., lim

ε→0
Hk,τ (ε) = 0. As for the integral over D

(ε)
k−1 ∩ Um, we use the differential equation

for gk,τ (z), resp. g̃k,τ (w), to write

M∑
m=1

∫
D

(ε)
k−1∩Um

dwdc
wg̃k,τ (w) ∧ fDk−1,τ

(w) ∧ Ω̃n−1 =

M∑
m=1

∫
D

(ε)
k−1∩Um

fDk−1,τ
(w) ∧ Ω̃n −

M∑
m=1

∫
D

(ε)
k−1∩Um

fDk−1,τ
(w) ∧ δΘk,τ

∧ Ω̃n−1.

Summing up and taking dτdc
τ , we get the equation

dτdc
τ

∫
Aτ (C)

gk,τ (z) ∧ δDk−1,τ
∧ Ωn+1−k + cn,D · dτdc

τ log det η =

dτdc
τ

M∑
m=1

∫
D

(ε)
k−1∩Um

fDk−1,τ
(w) ∧ Ω̃n − dτdc

τ

M∑
m=1

∫
D

(ε)
k−1∩Um

fDk−1,τ
(w) ∧ δΘk,τ

∧ Ω̃n−1 + Hk,τ (ε).

By applying Lemma 3.8, which is easily verified to hold true with the domain of integration
D

(ε)
k−1 replaced by the domain D

(ε)
k−1 ∩ Um, the proof of (b) is then complete.

(c) To prove the last part of the Proposition, we proceed as in (b) with k = n+1. Observing
that the Dirac current δΘn+1,τ

vanishes on D
(ε)
n ∩ Um for sufficiently small ε, we obtain from

the last formula in the proof of part (b)

dτdc
τ

∫
Aτ (C)

gn+1,τ (z) ∧ δDn,τ
∧ Ω0 + cn,D · dτdc

τ log det η =

dτdc
τ

M∑
m=1

∫
D

(ε)
n ∩Um

fDn,τ (w) ∧ Ω̃n + Hn+1,τ (ε),

where Hn+1,τ (ε) is defined as in part (b) with k = n + 1. This concludes the proof of the
Proposition. 2

3.10. Corollary. Let A0 = Aτ0 be an n-dimensional abelian variety of polarization type D
defined over some field K ⊆ C such that the complex line bundle L0,C = Lτ0,C has (n + 1)
global sections s1,0 = s1,τ0 , ..., sn+1,0 = sn+1,τ0 , whose divisors intersect properly on A0(C).
Then, there exists an open Hausdorff neighbourhood U0 of τ0 ∈ Hn such that the given situation
extends to U0, and the following variational formula holds for all τ ∈ U0:

dτdc
τ

(∫
Aτ (C)

g1,τ (z) ∗ ... ∗ gn+1,τ (z) + Cn,D · log det η

)
= 0,

where Cn,D := (n + 1) · cn,D = 1
2 · d · (n + 1)!.

Proof. The existence of the claimed open Hausdorff neighbourhood U0 of τ0 ∈ Hn is evident
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by 3.1. Then, Lemma 3.2 applies in order to obtain the formula

dτdc
τ

(∫
Aτ (C)

g1,τ (z) ∗ ... ∗ gn+1,τ (z) + Cn,D · log det η

)
=

n+1∑
k=1

(
dτdc

τ

∫
Aτ (C)

gk,τ (z) ∧ δDk−1,τ
∧ Ωn+1−k + cn,D · dτdc

τ log det η

)
.

Eventually by shrinking U0 suitably, the corollary now becomes an immediate consequence of
Proposition 3.9 by letting ε tend to zero. 2

4 Global arguments

4.1. Lemma. Let F be a field of infinite cardinality, X/F a geometrically irreducible, projective
scheme of dimension d ≥ 2 and N a very ample line bundle on X. Then, for any integer ν >> 0
and any integer k ∈ {1, ..., d − 1}, there exists a non-empty Zariski open subset consisting
of (k + 1)-tuples of global sections (s1, ..., sk+1) ∈ Γ(X,N⊗ν)k+1 satisfying the following two
properties:
(a’) div(s1), ...,div(sk+1) intersect properly on X,
(b’) div(si1)∩ ...∩div(sik

) is geometrically irreducible for any choice of k indices 1 ≤ i1 < ... <
ik ≤ k + 1.

Proof. Since N is very ample, there exists for any integer ν >> 0 an embedding ϕ : X ↪→ PN
F

for some N , defined over F , such that ϕ∗OPN
F

(1) = N⊗ν and such that the restriction map
ϕ∗ : Γ(PN

F ,OPN
F

(1)) → Γ(X,N⊗ν) is surjective; we fix such an embedding in the sequel.
Let Grass(l, N) denote the Grassmannian variety parametrizing the l-codimensional linear

subvarieties of PN
F . Furthermore, let Ul be the subset of those l-tuples of global sections in

Γ(PN
F ,OPN

F
(1))l, whose divisors constitute l properly intersecting hyperplanes in PN

F . We note
that Ul is a non-empty Zariski open, hence dense, subset of Γ(PN

F ,OPN
F

(1))l and that there is
a natural, surjective morphism pl : Ul −→ Grass(l, N)(F ).

By [8], Corollaire 6.11.1 and the assumption k+1 ≤ d, there exists a non-empty Zariski open,
hence dense, subset V ′

k+1 ⊆ Grass(k + 1, N)(F ) with the property that codim(L ∩X) = k + 1
for all L ∈ V ′

k+1. We define Vk+1 := p−1
k+1(V

′
k+1); we note that Vk+1 is a non-empty Zariski

open, hence dense, subset of Uk+1, whence of Γ(PN
F ,OPN

F
(1))k+1, consisting of (k + 1)-tuples of

global sections (s′1, ..., s
′
k+1) ∈ Γ(PN

F ,OPN
F

(1))k+1 with the property that

codim(div(s′1) ∩ ... ∩ div(s′k+1) ∩X) = k + 1.

Again, using [8], now Corollaire 6.11.3 and the assumption k + 1 ≤ d, one proves the
existence of a non-empty Zariski open, hence dense, subset W ′

k ⊆ Grass(k, N)(F ) such that
the intersection L∩X is geometrically irreducible for all L ∈ W ′

k. We define Wk := p−1
k (W ′

k); we
note that Wk is a non-empty Zariski open, hence dense, subset of Uk, whence of Γ(PN

F ,OPN
F

(1))k,
consisting of k-tuples of global sections (s′1, ..., s

′
k) ∈ Γ(PN

F ,OPN
F

(1))k such that div(s′1) ∩ ... ∩
div(s′k) ∩X is geometrically irreducible.

For any choice of k indices 1 ≤ i1 < ... < ik ≤ k + 1 consider the projections

qi1,...,ik
: Γ(PN

F ,OPN
F

(1))k+1 −→ Γ(PN
F ,OPN

F
(1))k
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given by mapping (s′1, ..., s
′
k+1) to (s′i1 , ..., s

′
ik

). Define the subset

Uk := Vk+1 ∩
⋂

1≤i1<...<ik≤k+1

q−1
i1,...,ik

(Wk);

it is a non-empty Zariski open, hence dense, subset of Γ(PN
F ,OPN

F
(1))k+1. By the surjectivity

of the restriction map ϕ∗ : Γ(PN
F ,OPN

F
(1))k+1 → Γ(X,N⊗ν)k+1 the set ϕ∗Uk is a non-empty

Zariski open subset of Γ(X,N⊗ν)k+1 consisting of (k+1)-tuples of global sections (s1, ..., sk+1)
satisfying the two properties (a’), (b’). 2

4.2. Remark. Assuming that F is of characteristic zero and that the scheme X/F is smooth,
it is easily seen by using [8], Corollaire 6.11.2, that Lemma 4.1 holds true with property (a’)
replaced by the property that div(s1), ...,div(sk+1) intersect properly and smoothly on X.

4.3. Notation. Any k global sections s1, ..., sk of M(m1, m2) induce k global sections of the
complex line bundle M(m1, m2)⊗Q C via the canonical embedding of Q into C; these sections
will again be denoted by s1, ..., sk. With this in mind, we define for any k global sections
s1, ..., sk ∈ Γ

(
An,D,Θ,M(m1, m2)

)
the following two subsets of An,D,Θ(C):

S(s1, ..., sk) := {x ∈ An,D,Θ(C) | div(s1|π−1(x)), ...,div(sk|π−1(x))

intersect properly on π−1(x)},

T (s1, ..., sk) := An,D,Θ(C) \ S(s1, ..., sk).

We note that T (s1, ..., sk) is a Zariski closed subset of An,D,Θ(C).

4.4. Proposition. With the above notations we have the following result: For m1 >> m2 >> 0
there exists a non-empty Zariski open subset consisting of (n + 1)-tuples of global sections
(s1, ..., sn+1) ∈ Γ

(
An,D,Θ,M(m1, m2)

)n+1
satisfying the following two properties:

(a) codim(T (s1, ..., sn+1)) ≥ 1,
(b) codim(T (si1 , ..., sin)) ≥ 2 for any choice of n indices 1 ≤ i1 < ... < in ≤ n + 1.

Proof. By applying Lemma 4.1 with F = Q, X = An,D,Θ, N = M(m1, m2) (i.e., choose
m1 >> m2 >> 0 in particular such that M(m1, m2) is very ample) and k = n, we find
for ν >> 0 a non-empty Zariski open subset consisting of (n + 1)-tuples of global sections
(s1, ..., sn+1) ∈ Γ

(
An,D,Θ,M(νm1, νm2)

)n+1
such that the corresponding (n + 1)-tuples of

holomorphic global sections, which we denote again by (s1, ..., sn+1), satisfy the following two
properties
(a’) div(s1), ...,div(sn+1) intersect properly on An,D,Θ(C),
(b’) div(si1)∩ ...∩ div(sin

) ⊆ An,D,Θ(C) is irreducible for any choice of n indices 1 ≤ i1 < ... <
in ≤ n + 1.

It remains to show that the global sections under consideration satisfy properties (a) and
(b); to do this we write mj instead of νmj (j = 1, 2). To check property (a) we now put

X1,...,n+1 := div(s1) ∩ ... ∩ div(sn+1),

which is by construction an (n + 1)-codimensional cycle in An,D,Θ(C). Furthermore, let ρ :=
π|X1,...,n+1 : X1,...,n+1 → An,D,Θ(C) denote the restriction of π to X1,...,n+1 and put Y :=
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ρ(X1,...,n+1) ⊆ An,D,Θ(C). Since ρ is proper, the subset Y is Zariski closed and we have
codim(Y ) ≥ 1. On the other hand, we have by definition

T (s1, ..., sn+1) = {x ∈ Y | dim(ρ−1(x)) ≥ 0};

hence, we arrive at codim(T (s1, ..., sn+1)) ≥ codim(Y ) ≥ 1.
To check property (b), we note that for any choice of n indices 1 ≤ i1 < ... < in ≤ n + 1,

the intersections
Xi1,...,in

:= div(si1) ∩ ... ∩ div(sin
)

are irreducible subschemes of An,D,Θ(C) of codimension n. Let us fix a set of indices 1 ≤ i1 <
... < in ≤ n + 1 and denote by ρ′ := π|Xi1,...,in

: Xi1,...,in
→ An,D,Θ(C) the restriction of π to

Xi1,...,in . Because the restrictions of the n global sections si1 , ..., sin to any fibre of π intersect
in at least one point, the morphism ρ′ is surjective. Hence, we have by definition

T (si1 , ..., sin
) = {x ∈ An,D,Θ(C) | dim(ρ′−1(x)) ≥ 1}.

We note that the Zariski closed set T (si1 , ..., sin
) is properly contained in An,D,Θ(C). If we

now had codim(T (si1 , ..., sin
)) = 1, we could deduce the inequality dim(ρ′−1T (si1 , ..., sin

)) ≥(
dim(An,D,Θ(C))− 1

)
+ 1, i.e., codim(ρ′−1T (si1 , ..., sin)) ≤ n; the irreducibility of Xi1,...,in

would then imply ρ′−1T (si1 , ..., sin) = Xi1,...,in , which contradicts the fact that T (si1 , ..., sin)
is properly contained in An,D,Θ(C). Hence, we deduce codim(T (si1 , ..., sin

)) ≥ 2, as claimed.
2

4.5. Remark. Denote by πn,D,Θ the canonical projection πn,D,Θ : Hn −→ An,D,Θ(C) and,
with the notation 4.3, set

S ′(s1, ..., sk) := π−1
n,D,Θ(S(s1, ..., sk)) ⊆ Hn,

T ′(s1, ..., sk) := π−1
n,D,Θ(T (s1, ..., sk)) ⊆ Hn.

We then call (n + 1) global sections s1, ..., sn+1 ∈ Γ
(
An,D,Θ,M(m1, m2)

)
to be in general

position at τ0 ∈ Hn, if the following properties are satisfied:

(a) codim(T ′(s1, ..., sn+1)) ≥ 1,
(b) codim(T ′(si1 , ..., sin)) ≥ 2 for any choice of n indices 1 ≤ i1 < ... < in ≤ n + 1,
(c) τ0 ∈ S ′(s1, ..., sn+1).

The fact that for m2 sufficiently large there exists a non-empty Zariski open subset of
(n + 1)-tuples of global sections (s1,0, ..., sn+1,0) ∈ Γ

(
A0, L

⊗m2
0

)n+1
, whose divisors intersect

properly on A0, together with the statement of Proposition 4.4 implies that there exist (n + 1)
global sections s1, ..., sn+1 ∈ Γ

(
An,D,Θ,M(m1, m2)

)
, which are in general position at τ0 ∈ Hn,

provided m1 >> m2 >> 0. Furthermore, we note that the above construction shows that
the global sections s1, ..., sn+1 can be chosen as rational, hence integral linear combinations of
products of theta functions and Thetanullwerte with characteristics in D−1Zn/Zn.

4.6. Remark. Assume that there are (n + 1) global sections s1, ..., sn+1 ∈ Γ(An,D,Θ,L), which
are in general position at τ0 ∈ Hn. Then, by associating

x 7→ P = P (x) ∈ div(s1|π−1(x)) · ... · div(sn|π−1(x)),

we obtain a holomorphic section P : An,D,Θ −→ An,D,Θ. By [25] such a section is necessarily
a torsion section, whence the α, β-coordinates of P (x) are constant, i.e., independent of x ∈
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An,D,Θ, resp. τ ∈ Hn, mod. Zn and rational. With regard to Remark 3.4, we therefore have for
all τ ∈ S ′(s1, ..., sn+1)

dτdc
τ

 ∑
P∈Dn,τ

gn+1,τ (P ) + cn,D · log det η

 = 0.

Hence, by Corollary 3.10, we obtain locally for all τ ∈ D, an embedded unit disc satisfying
D ⊆ S ′(s1, ..., sn) and D∗ ⊆ S ′(s1, ..., sn+1) (here D∗ = D \ {0}),

dτdc
τ

∫
Aτ (C)

g1,τ (z) ∗ ... ∗ gn+1,τ (z)−
∑

P∈Dn,τ

gn+1,τ (P ) + n · cn,D · log det η

 = 0.

5 Main results

5.1. Definition. A holomorphic function f on Hn, n ≥ 2, is called a Siegel modular form of
weight k with respect to the subgroup Γn,D,Θ of the paramodular group Γn,D and some finite
character χ : Γn,D,Θ → C∗, if it satisfies (cf. 2.1)

F (R(τ)) det(D−1cRτ + D−1dRD)−k = χ(R) F (τ)

for all

R =
(

aR bR

cR dR

)
∈ Γn,D,Θ.

The C-vector space spanned by such functions will be denoted by Mk(Γn,D,Θ, χ).

5.2. Theorem. Let A0 = Aτ0 be an n-dimensional abelian variety, n ≥ 2, of polarization type
D together with the line bundle L0 = Lτ0 , everything being defined over some field K ⊆ C. Fur-
thermore, assume that there exist (n + 1) global sections s1, ..., sn+1 ∈ Γ

(
An,D,Θ,M(m1, m2)

)
,

which are in general position at τ0 ∈ Hn. Then, there exists a Siegel modular form F ∈
MCn,D;m1,m2

(Γn,D,Θ, χ) of weight Cn,D;m1,m2 := (m1 + m2/2) ·mn
2 · d · (n + 1)! and some finite

character χ such that the equality∫
Aτ (C)

g1,τ (z) ∗ ... ∗ gn+1,τ (z) = − log |F (τ)|2 − Cn,D;m1,m2 · log det η (4)

holds for all τ ∈ S ′(s1, ..., sn+1).

Proof. Noting that the global sections in question now have weight (m1 +m2/2) instead of 1/2
and that L0 has been replaced by L⊗m2

0 , Corollary 3.10 asserts that for any τ ′ ∈ S ′(s1, ..., sn+1)

dτdc
τ

(∫
Aτ (C)

g1,τ (z) ∗ ... ∗ gn+1,τ (z) + Cn,D;m1,m2 · log det η

)
= 0 (5)

for all τ sufficiently close to τ ′. We conclude that for any open and simply connected subset
U ⊆ S ′(s1, ..., sn+1) there exists a non-vanishing, holomorphic function FU satisfying∫

Aτ (C)

g1,τ (z) ∗ ... ∗ gn+1,τ (z) + Cn,D;m1,m2 · log det η + log |FU (τ)|2 = 0
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for all τ ∈ U ; by the commutativity of the integral over the (n + 1)-fold ∗-product of Green
currents, the preceding formula holds true with the factors g1,τ (z), ..., gn+1,τ (z) permuted in an
arbitrary way. We will show now that FU extends to a holomorphic function on all of Hn. If we
have codim(T ′(s1, ..., sn+1)) ≥ 2, FU extends to a holomorphic function F defined on all of Hn

by the Riemann removable singularity Theorem (cf. [12], p. 262) and the simple connectivity
of Hn. On the other hand, if the codimension in question is one, we proceed as follows: Define

U :=
⋃

1≤i1<...<in≤(n+1)

S ′(si1 , ..., sin
) ⊆ Hn ;

further, let D ⊆ Hn be an embedded unit disk, let D∗ be D minus the image of the origin of
that unit disk and assume

(i) D∗ ⊆ S ′(s1, ..., sn+1),
(ii) D ⊆ S ′(si1 , ..., sin

) for some choice of n indices 1 ≤ i1 < ... < in ≤ n + 1.

Then, for the choice of indices 1 ≤ i1 < ... < in ≤ n + 1 made in (ii), denote by Di1,...,in;τ

the intersection of the n divisors Θi1,τ , ...,Θin,τ ; finally, let in+1 ∈ {1, ..., n + 1} be the index
different from i1, ..., in. We now derive from Remark 4.6 that the equality (note again that the
global sections in question have weight (m1 + m2/2) instead of 1/2, L0 has been replaced by
L⊗m2

0 and that the set of indices {1, ..., n + 1} has been replaced by {i1, ..., in+1})

dτdc
τ

(∫
Aτ (C)

gi1,τ (z) ∗ ... ∗ gin+1,τ (z) + n · (m1 + m2/2) ·mn
2 · d · n! log det η−

∑
P∈Di1,...,in;τ

gin+1,τ (P )

 = 0

holds for all τ ∈ D. Therefore, there is a non-vanishing, holomorphic function f
(1)
D on D such

that the equality∫
Aτ (C)

gi1,τ (z) ∗ ... ∗ gin+1,τ (z) + n · (m1 + m2/2) ·mn
2 · d · n! log det η −∑

P∈Di1,...,in;τ

gin+1,τ (P ) + log |f (1)
D (τ)|2 = 0 (6)

holds for all τ ∈ D. Let now t be a local coordinate on D and let ν denote the number of points
in the intersection of Di1,...,in;τ ′′ with Θin+1,τ ′′ at the point τ ′′ ∈ D corresponding to t = 0.
Then, it again follows from Remark 4.6 that there is a non-vanishing, holomorphic function
f

(2)
D on D such that the equality∑

P∈Di1,...,in;τ

gin+1,τ (P ) + (m1 + m2/2) ·mn
2 · d · n! log det η +

ν log |t|2 + log |f (2)
D (t)|2 = 0 (7)

holds for all τ ∈ D. Adding (6) to (7) defines a holomorphic function FD on D, which vanishes
only at the point τ ′′ ∈ D corresponding to t = 0, namely to the positive integral order ν, such
that we have for all τ ∈ D∫

Aτ (C)

gi1,τ (z) ∗ ... ∗ gin+1,τ (z) + Cn,D;m1,m2 · log det η + log |FD(τ)|2 = 0.
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The above argument implies that for any open and simply connected subset U ⊆ U there exists
a holomorphic, not necessarily non-vanishing function FU such that∫

Aτ (C)

g1,τ (z) ∗ ... ∗ gn+1,τ (z) + Cn,D;m1,m2 · log det η + log |FU (τ)|2 = 0

for all τ ∈ U . By assumption we have codim(Hn \ U) ≥ 2; hence, again by the Riemann
removable singularity Theorem and the simple connectivity of Hn, FU extends to a holomorphic
function F defined on all of Hn.

Since the integral ∫
Aτ (C)

g1,τ (z) ∗ ... ∗ gn+1,τ (z)

is Γn,D,Θ-invariant, so is

|F (τ)|2 det ηCn,D;m1,m2 = exp
(
log |F (τ)|2 + Cn,D;m1,m2 · log det η

)
.

Therefore, F is a Siegel modular form of weight Cn,D;m1,m2 with respect to Γn,D,Θ and some
character χ. By [22], p. 109, the commutator subgroup [Γn,D,Θ, Γn,D,Θ] is of finite in-
dex in Γn,D,Θ, which shows that the character χ is finite. We have now constructed F ∈
MCn,D;m1,m2

(Γn,D,Θ, χ) such that the claimed formula (4) holds for all τ ∈ S ′(s1, ..., sn+1).
This finishes the proof of the theorem. 2

5.3. Remark. As we shall see in the next corollary, a variation of the proof of Theorem 5.2
leads to an explicit description of the modular form F ∈ MCn,D;m1,m2

(Γn,D,Θ, χ). If one is only
interested in proving formula (4),∫

Aτ (C)

g1,τ (z) ∗ ... ∗ gn+1,τ (z) = − log |F (τ)|2 − Cn,D;m1,m2 · log det η,

without any further knowledge about the modular form F in question, J.-B. Bost pointed out
to the authors the following argument: To simplify the exposition we assume that there exist
(n + 1) global sections s1, ..., sn+1 ∈ Γ(An,D,Θ,L) having properly intersecting divisors, i.e., we
assume m1 = 0, m2 = 1. Then, g1 ∗ ... ∗ gn+1 is a well-defined Green current of type (n, n) on
An,D,Θ(C) satisfying

ddc(g1 ∗ ... ∗ gn+1) + δDn+1 = c1(L, ‖ · ‖)n+1.

Taking the direct image of this equation with respect to the proper map π : An,D,Θ → An,D,Θ

and observing that π∗ commutes with ddc and δ, we derive

dτdc
τ (π∗(g1 ∗ ... ∗ gn+1)) + δπ∗Dn+1 = π∗

(
c1(L, ‖ · ‖)n+1

)
.

Now, it is clear that the class of e∗L equals half of the class of K in Pic(An,D,Θ)Q and, further-
more, it follows from [3], chapter I, or [17], appendice 2, that the class of det π∗(L⊗π∗e∗L⊗−1)
equals −d/2 times the class of K, again in Pic(An,D,Θ)Q; this implies that the class of det π∗L
is trivial in Pic(An,D,Θ)Q. We also note that [18] shows that all of the above is compatible
with the hermitian metrics in question, K being equipped with the Petersson metric ‖ · ‖Pet. A
short calculation, using the Hirzebruch-Riemann-Roch Theorem, then gives

π∗
(
c1(L, ‖ · ‖)n+1

)
=

1
2
· d · (n + 1)! · c1(K, ‖ · ‖Pet).
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Therefore, the function π∗(g1 ∗ ... ∗ gn+1) in question is given as

− log
(
|F (τ)|2 · det η

1
2 ·d·(n+1)!

)
,

where F ∈ Γ(An,D,Θ,K⊗ 1
2 ·d·(n+1)!) (with divisor π∗Dn+1), i.e., F is a modular form of weight

k = 1
2 · d · (n + 1)! with respect to Γn,D,Θ.

5.4. Corollary. Assume that the hypotheses of Theorem 5.2 hold. Then, the modular form
F ∈ MCn,D;m1,m2

(Γn,D,Θ, χ) of Theorem 5.2 is given by the formula

F (τ) = ζ
∏

1≤i1<...<in≤n+1

∏
P∈Di1,...,in;τ

sin+1,τ (P ) · eπim2αt
P ταP ,

where ζ is a non-zero constant (unique up to multiplication by a complex number of absolute
value one), in+1 ∈ {1, ..., n + 1} denotes the index different from i1, ..., in and Di1,...,in;τ the
intersection of the n divisors Θi1,τ , ...,Θin,τ taken for τ ∈ S ′(si1 , ..., sin

) and P ∈ Di1,...,in;τ is
written as P = −τ · αP + βP .

Proof. We will vary the proof of Theorem 5.2 slightly: We consider the difference∫
Aτ (C)

g1,τ (z) ∗ ... ∗ gn+1,τ (z)−
∑

1≤i1<...<in≤n+1

∑
P∈Di1,...,in;τ

gin+1,τ (P ); (8)

by Corollary 3.10 and Remark 4.6 it is harmonic for τ ∈ S ′(s1, ..., sn+1). Let

U :=
⋂

1≤i1<...<in≤n+1

S ′(si1 , ..., sin) ⊆ Hn

and D ⊆ Hn be an embedded unit disk satisfying

(i) D∗ ⊆ S ′(s1, ..., sn+1),
(ii) D ⊆ U .

Then, we rewrite (8) as∫
Aτ (C)

g1,τ (z) ∗ ... ∗ gn+1,τ (z) −
∑

P∈Dn,τ

gn+1,τ (P )

−
∑

in+1 6=n+1

∑
P∈Di1,...,in;τ

gin+1,τ (P ), (9)

where the sum over in+1 6= n + 1 is a shorthand for the sum over all n-tuples 1 ≤ i1 < ... <
in ≤ n + 1 different from the n-tuple 1, ..., n. By considering the difference between the above
integral and the first sum and then the double sum individually, we conclude as in the proof
of Theorem 5.2 using Remark 4.6 that the difference (8) can be expressed as the logarithm of
the absolute value square of some holomorphic function on D, hence on the whole of U . Since
codim(Hn \ U) ≥ 2, this function extends to a holomorphic function H on all of Hn satisfying∫

Aτ (C)

g1,τ (z) ∗ ... ∗ gn+1,τ (z)−
∑

1≤i1<...<in≤n+1

∑
P∈Di1,...,in;τ

gin+1,τ (P ) = log |H(τ)|2.
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Obviously, H must be a modular form of weight 0, i.e., H is a holomorphic modular function,
hence a constant on all of Hn. This constant must be non-zero, since H(τ) does not vanish for
τ ∈ S ′(s1, ..., sn+1). Now the proof can be easily completed. 2

5.5. Remark. The quantity ζ appearing in Corollary 5.4 is by construction a constant with
respect to τ ∈ Hn, which depends of course on the choice of the global sections s1, ..., sn+1,
i.e., s1,0, ..., sn+1,0 under consideration. Here this dependence is determined: First, ζ is a
symmetric function in s1,0, ..., sn+1,0; hence, it suffices to study ζ as a function of the single
variable s = sn+1,0, while fixing s1,0, ..., sn,0 such that their divisors intersect properly. Secondly,
the definition of ζ in the proof of Corollary 5.4 together with formula (9) shows that ζ is
independent of the scale of s; hence, ζ can be viewed as a function on the projective space
P := PΓ(A0(C), L⊗m2

0,C ). Let P∨ denote the dual projective space of P. Since we may assume
without loss of generality that the line bundle under consideration is very ample, we have an
embedding A0(C) ↪→ P∨ given by mapping P ∈ A0(C) to the hyperplane EP ∈ P∨ determined
by the set of those sections s ∈ P vanishing at P .

By arguing as in section 4, it can be shown that the intersection of div(s) with Dn,0 is
proper, i.e., empty, for all s ∈ P away from a 1-codimensional subset E ⊂ P, and that the
intersections Di1,...,in;τ0 are proper for all n-tuples 1 ≤ i1 < ... < in ≤ n + 1 different from the
n-tuple 1, ..., n for all s ∈ P away from a 2-codimensional subset E′ ⊂ E ⊂ P. For s ∈ P \ E,
the definition of ζ together with formula (9) leads to the following differential equation

−dsd
c
s log |ζ|2 = dsd

c
s

∑
in+1 6=n+1

∑
P∈Di1,...,in;τ0

gin+1,τ0(P ).

For s ∈ P \ E′, let N denote the cardinality of the disjoint union of the proper intersections
Di1,...,in;τ0 (counting multiplicities) for all n-tuples 1 ≤ i1 < ... < in ≤ n + 1 different from the
n-tuple 1, ..., n, namely N = n ·mn

2 · d · n! . Furthermore, let A := SymN (A0(C)) be the N -fold
symmetric product of A0(C) with itself. Then, we obtain a morphism f : P \ E′ −→ A, given
by associating to s ∈ P \ E′ the points in the disjoint union of the proper intersections⋃̇

in+1 6=n+1

Di1,...,in;τ0 ⊂ A,

again taking into account multiplicities. Since codim(E′) ≥ 2, this morphism extends to a
morphism from P to A, which is again denoted by f . Representing the points P ∈ f(s) by
z(s) = x(s)+ iy(s) ∈ Cn (the universal covering of A0(C)) and using the definition of the Green
current gin+1,τ0(z(s)), the above differential equation becomes

−dsd
c
s log |ζ|2 + n ·m2 ·

∑
P∈Dn,0

δEP
= m2 · µP

with the (1, 1)-form
µP = dsd

c
s

∑
P∈f(s)

2πy(s)tη−1
0 y(s);

here, as usual, τ0 = ξ0 + iη0 ∈ Hn. A direct computation yields µP = f∗µA, where

µA =
N∑

j=1

p∗j
(
dzd

c
z(2πytη−1

0 y)
)
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with pj :
∏N

j=1 A0(C) → A0(C) denoting the projection onto the j-th factor (j = 1, ..., N). The
translation invariance of the (1, 1)-form dzd

c
z(2πytη−1

0 y) on A0(C) then implies the invariance
of the (1, 1)-forms (pj ◦ f)∗(dzd

c
z(2πytη−1

0 y)) with respect to the action of the unitary group
operating on P; by symmetry, we therefore conclude µP = N · c′(L0) · µFS , where c′(L0) is a
constant depending only on the line bundle L0 and µFS denotes the first Chern form of OP(1)
with respect to the Fubini-Study metric. Hence, we obtain the differential equation

−dsd
c
s log |ζ|2 + n ·m2 ·

∑
P∈Dn,0

δEP
= N ·m2 · c′(L0) · µFS .

In particular, by taking cohomology classes on both sides of the above equation, we derive
c′(L0) = 1. Now, this differential equation can be solved explicitly in terms of the normalized
Green’s function gP( · , · ) relative to µFS viewed as a function on P×P∨ (cf. [15], p. 26). Using
the symmetry in s1,0, ..., sn+1,0, we finally arrive at the formula

− log |ζ|2 = m2 ·
∑

1≤i1<...<in≤n+1

∑
P∈Di1,...,in;τ0

gP(sin+1,0, P ) + mn
2 · d · (n + 1)! · c(L0);

here P has to be interpreted as an element of P∨ by identifying P with the hyperplane EP ,
and c(L0) is a constant depending only on the line bundle L0.

5.6. Remark. Theorem 5.2 and Corollary 5.4 have been proven under the assumption that
there exist (n+1) global sections s1, ..., sn+1, which are in general position at τ0 ∈ Hn. We now
introduce the following more relaxed condition: For a fixed set of global sections s1, ..., sn+1 ∈
Γ
(
An,D,Θ,M(m1, m2)

)
, put

Un+1 := S ′(s1, ..., sn+1),

Un := {τ ∈ Hn | ∃ 1 ≤ i1 = i1(τ) < ... < in = in(τ) ≤ n + 1

such that div(si1,τ ), ...,div(sin,τ ) intersect properly}.

We then call the (n + 1) global sections s1, ..., sn+1 in general position, if

(ã) codim(Hn \ Un+1) ≥ 1,
(b̃) codim(Hn \ Un) ≥ 2.

We show that the statement of Corollary 5.4 holds true assuming this weaker condition. For
this consider the difference∫

Aτ (C)

gi1(τ1),τ (z) ∗ ... ∗ gin+1(τ1),τ (z)−

∑
1≤i1<...<in≤n+1

∫
Aτ (C)

gin+1,τ (z) ∧ δDi1,...,in;τ ∧ Ων (10)

for τ in some transverse disk D around a fixed τ1 ∈ Un \ Un+1; here ν = dim Di1,...,in;τ . Note
that the set Un\Un+1 consists of irreducible components and that the integer in+1(τ) is constant
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on each of these components. Now, rewrite (10) as∫
Aτ (C)

gi1(τ1),τ (z) ∗ ... ∗ gin+1(τ1),τ (z)−
∑

P∈Di1(τ1),...,in(τ1);τ

gin+1(τ1),τ (P ) −

∑
in+1 6=in+1(τ1)

∫
Aτ (C)

gin+1,τ (z) ∧ δDi1,...,in;τ ∧ Ων ,

where the sum over in+1 6= in+1(τ1) is a shorthand for the sum over all n-tuples 1 ≤ i1 < ... <
in ≤ n+1 different from the n-tuple 1 ≤ i1(τ1) < ... < in(τ1) ≤ n+1. Now one applies Remark
4.6 to the difference between the first integral and the first sum and the fact that the second
integral is bounded from below in order to conclude as in the proof of Corollary 5.4 that the
difference (10) equals the logarithm of the absolute value square of some non-zero constant on
all of Hn. This proves the desired variant of Corollary 5.4. 2

5.7. Remark. Theorem 5.2 together with Corollary 5.4 leads to the following determination
of the analytic contribution to the arithmetic degree of line bundles on abelian varieties over
number fields; for the definition of the arithmetic degree of hermitian vector bundles on arith-
metic varieties we refer to [4] or [23]: Suppose that s1, ..., sn+1 ∈ Γ

(
An,D,Θ,L

)
, are (n + 1)

global sections, which are defined over Q and in general position; Remark 4.5 shows that this
is possible, eventually after replacing L by M(m1, m2) and choosing m1 >> m2 >> 0; to sim-
plify the exposition we assume m1 = 0, m2 = 1. Let now τ ∈ S ′(s1, ..., sn+1) be such that the
abelian variety A = Aτ is defined over some number field K and has good reduction at all the
finite places of the ring of integers OK of K, i.e., gives rise to an abelian scheme Ã/SpecOK .
As usual, let L = Lτ be the line bundle on A equipped with the smooth hermitian metric ‖ · ‖
having translation invariant curvature. Furthermore, denote by L̃ the unique extension of L
to a symmetric, relatively ample line bundle on Ã satisfying the theorem of the cube (cf. [17],
chapitre II). Then, the analytic contribution deg∞(L, ‖ ·‖) to the arithmetic degree d̂eg(L, ‖ ·‖)
of L (or rather of L̃) is given by the formula

deg∞(L, ‖ · ‖) = −1
2

∑
σ:K↪→C

(
log |F (τ (σ))|2 +

1
2
· d · (n + 1)! · log det η(σ)

)
;

here τ (σ) ∈ Hn is such that A ×σ C = Aτ(σ) and F ∈ M 1
2 ·d·(n+1)!(Γn,D,Θ, χ), a modular form,

which is explicitly determined by the formula given in Corollary 5.4. The recent preprint [14]
of K. Künnemann shows that the above result can also be applied, if the abelian variety A/K
in question has semi-stable reduction at all the finite places of the ring of integers OK .

In [13], Proposition 13.1, K. Künnemann proves a result which is analogous to ours. He
shows that the analytic contribution to the arithmetic degree in question can be expressed
in terms of classical Thetanullwerte provided that they do not vanish on the abelian schemes
under consideration. We therefore view our application of Theorem 5.2 and Corollary 5.4 as
being supplementary to the result of K. Künnemann.

6 Examples

6.1. The case n = 1, d = 1. This example is included here for the sake of completeness; we
also refer to [1] or [10]. We point out that it is not covered by Corollary 5.4 nor the subsequent
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Remark 5.6 because of dimension reasons and since 4 does not divide d. Since D = (1), we
are working here with the universal elliptic surface A1,(1),Θ over the modular curve A1,(1),Θ

attached to Igusa’s group Γ1(1, 2) (cf. [7], p. 178) and with the line bundle L00 := L over
A1,(1),Θ induced by the theta function ϑ(τ, z). The functions

s00,τ (z) := ϑ

[
0
0

]
(τ, z)2 , s11,τ (z) := ϑ

[
1/2
1/2

]
(τ, z)2

then are global sections of the line bundle L⊗2
00 over A1,(1),Θ. Using the integral formula given

in 1.1, we then compute (with the obvious notations)∫
Aτ (C)

g11,τ (z) ∗ g00,τ (z) =
∫

Aτ (C)

(
g11,τ (z) ∧ ω + g00,τ (z) ∧ δdiv(s11,τ )

)
=

−4
∫ 1

0

∫ 1

0

log
∣∣∣∣ϑ [ α

β

]
(τ, 0)

∣∣∣∣2 dαdβ − 4 log
∣∣∣∣ϑ [ 0

0

]
(τ, 0)

∣∣∣∣2 − 4 log η =

−1
6

log |∆(τ)|2 − 4 log
∣∣∣∣ϑ [ 0

0

]
(τ, 0)

∣∣∣∣2 − 4 log η.

Analogously, we could work with the line bundle L01, resp. L10, instead of L over the universal
elliptic surface attached to the congruence subgroup Γ0(2), resp. Γ0(2), induced by the theta
functions

ϑ

[
0

1/2

]
(τ, z), resp. ϑ

[
1/2
0

]
(τ, z).

Observing now that

s01,τ (z) := ϑ

[
0

1/2

]
(τ, z)2, resp. s10,τ (z) := ϑ

[
1/2
0

]
(τ, z)2,

together with s11,τ (z) are global sections of the line bundle L⊗2
01 , resp. L⊗2

10 , we derive as before∫
Aτ (C)

g11,τ (z) ∗ g01,τ (z) = −1
6

log |∆(τ)|2 − 4 log
∣∣∣∣ϑ [ 0

1/2

]
(τ, 0)

∣∣∣∣2 − 4 log η,

respectively∫
Aτ (C)

g11,τ (z) ∗ g10,τ (z) = −1
6

log |∆(τ)|2 − 4 log
∣∣∣∣ϑ [ 1/2

0

]
(τ, 0)

∣∣∣∣2 − 4 log η.

Adding up, we obtain∫
Aτ (C)

g11,τ (z) ∗ g00,τ (z) +
∫

Aτ (C)

g11,τ (z) ∗ g01,τ (z) +∫
Aτ (C)

g11,τ (z) ∗ g10,τ (z) = − log |∆(τ)|2 − 12 log η − 8 log 2, (11)

since

ϑ

[
0
0

]
(τ, 0) · ϑ

[
0

1/2

]
(τ, 0) · ϑ

[
1/2
0

]
(τ, 0) = 2 ·∆(τ)1/8.
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6.2. Remark. We complement example 6.1 by showing how the above computations can
be used to derive an explicit formula for the arithmetic degree of hermitian line bundles on
semi-stable elliptic curves: To illustrate the method, we consider for simplicity an elliptic curve
A/Q having multiplicative reduction for one odd prime p, good reduction for the remaining odd
primes and ordinary reduction for the prime 2; furthermore, we assume that the 2-torsion of A is
rational. We denote by ∆min

A the minimal discriminant of A; by assumption, we have ∆min
A = pnp

with a certain positive integer np, which in addition will be assumed to be even. An example of
such an elliptic curve A/Q is given by the Tate equation Y 2+XY +Y = X3−X2−6X−4 with
minimal discriminant ∆min

A = 172. We denote by Ã/Z the Néron model associated to A/Q. By
our assumptions, only the fibre Ãp/Fp of Ã/Z over the closed point (p) ∈ Spec Z is reducible;
it is given as an np-gon whose edges are denoted by Cν (ν = 0, ..., np − 1), C0 intersecting the
image of Spec Z by the zero-section. According to [17], chapitre II, the np-th tensor-power of the
symmetric, ample line bundle L⊗2 = L⊗2

τ on A = Aτ has a unique extension to a symmetric,
relatively ample line bundle M̃ on Ã satisfying the theorem of the cube. Allowing rational
multiplicities, the divisor of the global section s11 of L⊗2 is seen to extend to the following
rational divisor on Ã

d̃iv(s11) = div(s11) +
np−1∑
ν=0

mν · Cν ,

where div(s11) denotes the Zariski closure in Ã of div(s11), namely the image of Spec Z by the
zero-section, and the rational multiplicities mν are given by

mν =
ν(ν − np)

np
(ν = 0, ..., np − 1).

Since np is assumed to be even, precisely one of the divisors of the three global sections
s00, s01, s10 of L⊗2 extends to a rational divisor on Ã with the same vertical part as d̃iv(s11)
and with horizontal part being determined by the Zariski closure in Ã of the corresponding
divisor on the generic fibre A of Ã. The divisors of the remaining two global sections of L⊗2

then extend to rational divisors on Ã with horizontal part being given by the Zariski closure
of the corresponding divisor on the generic fibre A of Ã and with vertical part

∑np−1
ν=0 m′

ν ·Cν ,
where the rational multiplicities m′

ν equal the multiplicities mν up to a cyclic permutation of
the indices determined by the property m′

np/2 = 0. The intersection number of d̃iv(s11) with

the sum d̃iv(s00) + d̃iv(s01) + d̃iv(s10) is then easily computed to

d̃iv(s11) ·
(
d̃iv(s00) + d̃iv(s01) + d̃iv(s10)

)
= −2np +

1
np

.

Combining the analytical formula (11) together with the above geometric considerations, we
finally arrive at

d̂eg(L, ‖ · ‖) =
1

4n2
p

· d̂eg(M̃, ‖ · ‖) =

− 1
12

log |∆(τ)| − 1
2

log η +
(
−np

6
+

1
12np

)
log p +

2
3

log 2;

concerning the determination of the last summand, we used the fact that the intersection of
d̃iv(s11) with the second rational divisor, which passes through the origin in the fibre Ã2/F2,
is transversal.
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6.3. The case n = 2, d = 1. We point out that this example will not follow directly from
Corollary 5.4 but rather from Remark 5.6; the fact that d is not divisible by 4 does not lead to
serious problems.

Let H denote the 1-codimensional subset of H2 consisting of those τ ∈ H2, which are
diagonalizable with respect to the action of Sp2(Z). The entries of τ ∈ H are the moduli of
abelian surfaces, which are Jacobians of singular curves of genus 2, while the entries of τ /∈ H
are the moduli of abelian surfaces, which are Jacobians of smooth, projective curves of genus 2
(which are necessarily hyperelliptic).

First, let τ vary in H2 away from H and denote as usual by Aτ the corresponding abelian
surface equipped with the line bundle Lτ associated to the divisor of the theta function ϑ(τ, z).
For each one of the six odd 2-torsion points P ∈ Aτ consider the global section

sP,τ (z) := ϑ(τ, z − P )2 ∈ Γ(Aτ , L⊗2
τ );

its divisor ΘP,τ contains the origin of Aτ . In fact, it can be shown by using the Abel-Jacobi
map for curves of genus 2 and the Jacobi inversion formula that ΘP,τ contains precisely six
2-torsion points (each with multiplicity 2). For each one of the remaining ten 2-torsion points
Q /∈ ΘP,τ consider the global section sQ,τ (z) := sP,τ (z − Q) ∈ Γ(Aτ , L⊗2

τ ); its divisor ΘQ,τ

contains Q. Since ΘP,τ and ΘQ,τ are irreducible and since Q ∈ ΘQ,τ , but Q /∈ ΘP,τ , the
intersection ΘP,τ ∩ ΘQ,τ is proper, hence consists of two points (each with multiplicity 4),
which are 2-torsion points (use again the Abel-Jacobi map and the Jacobi inversion formula).
By extrapolating from the diagonal case, it can finally be shown that there are four choices for
a 2-torsion point R /∈ ΘP,τ ∪ ΘQ,τ such that the divisor ΘR,τ of the global section sR,τ (z) :=
sP,τ (z − R) ∈ Γ(Aτ , L⊗2

τ ) has proper, i.e., empty intersection with ΘP,τ ∩ ΘQ,τ . With the
notations of Remark 5.6 we conclude U3 ⊇ H2 \ H.

Let now τ degenerate to a point in D, where D is an irreducible component of H; by
translating D by a suitable element of Sp2(Z), we may assume without loss of generality that
we deal with the component, where τ is diagonal. We note that each one of the divisors
ΘP,τ , ΘQ,τ , ΘR,τ constructed above then contains a seventh 2-torsion point; this point is just
the singular point on these divisors. By a direct inspection, it can then be shown that either
the three divisors ΘP,τ , ΘQ,τ , ΘR,τ have proper, i.e., empty intersection (as in the case τ /∈ H)
or at least two of them intersect properly (note that, if two of the divisors do not intersect
properly, they have precisely one component in common). In terms of Remark 5.6 this means
that U2 = H2.

For a given triple P,Q, R of 2-torsion points on Aτ as above, let Γ{P,Q,R} denote the sub-
group of Sp2(Z), consisting of those isomorphisms of Aτ , which fix P,Q, R as a set. Since the
sections sP , sQ, sR constructed above are in general position, we derive from Remark 5.6 that
there is an explicitly given Siegel modular form F{P,Q,R} of weight 24 with respect to Γ{P,Q,R}
such that the equality∫

Aτ (C)

gP,τ (z) ∗ gQ,τ (z) ∗ gR,τ (z) = − log |F{P,Q,R}(τ)|2 − 24 log det η (12)

holds. Summing now both sides of (12) over the various choices for P,Q, R, one obtains two
sums, which can be subdivided into ten partial sums according to the ten different choices for
Q. Since ϑ(τ, 0) 6= 0, one possible choice for Q is Q = P ; the corresponding partial sum on the
right hand side leads to the Siegel modular form

G(τ) :=
∏
P,R

F{P,P,R}(τ)
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of weight 576 with respect to the subgroup of Sp2(Z), which permutes the six odd 2-torsion
points and stabilizes the origin of Aτ , hence is nothing but Igusa’s group Γ2(1, 2) (cf. [6],
p. 405). The remaining nine partial sums lead to Siegel modular forms of the same weight,
but with respect to the nine different conjugate subgroups of Γ2(1, 2) inside of Sp2(Z) (note
that (Sp2(Z) : Γ2(1, 2)) = 10). Adding up, we obtain a Siegel modular form of weight 5760
with respect to the full modular group Sp2(Z), which vanishes by construction along H. Since
Sp2(Z)\H is irreducible and since Igusa’s χ10 ∈ M10(Sp2(Z)) (given by the product of the
squares of the ten even theta functions, cf. [6], p. 404) vanishes also precisely along H, we
conclude that∑

P,Q,R

∫
Aτ (C)

gP,τ (z) ∗ gQ,τ (z) ∗ gR,τ (z) = −576 log |c · χ10(τ)|2 − 5760 log det η,

where c is a suitable non-zero constant. We finish this example by noting that it is closely
related to the explicit computations given in [1], in particular in the Appendix there.

6.4. The case n = 3, d = 1. As the previous example, this example will not follow directly
from Corollary 5.4 but rather from Remark 5.6; again, the fact that d is not divisible by 4 does
not lead to serious problems.

Let H denote the subset of H3 consisting of those τ ∈ H3, which are the moduli of abelian
threefolds, which are Jacobians of smooth, projective, hyperelliptic curves of genus 3. The
closure H of H is a 1-codimensional subset of H3. The complement ∂H = H \ H consists of
those τ ∈ H3, which can be put into diagonal block form by means of the action of Sp3(Z).

First, let τ vary in H3 away from H and denote as usual by Aτ the corresponding abelian
threefold equipped with the line bundle Lτ associated to the divisor of the theta function ϑ(τ, z).
For each one of the 28 odd 2-torsion points P ∈ Aτ (cf. [20], p. 169) consider the global section

sP,τ (z) := ϑ(τ, z − P )2 ∈ Γ(Aτ , L⊗2
τ );

its divisor ΘP,τ contains the origin of Aτ . In fact, it can be shown (cf. [21], p. 3.105) that ΘP,τ

contains precisely 28 2-torsion points (each with multiplicity 2). For each one of the remaining
36 2-torsion points Q /∈ ΘP,τ consider the global section sQ,τ (z) := sP,τ (z −Q) ∈ Γ(Aτ , L⊗2

τ );
its divisor ΘQ,τ contains Q. Since ΘP,τ and ΘQ,τ are irreducible and since Q ∈ ΘQ,τ , but
Q /∈ ΘP,τ , the intersection ΘP,τ ∩ ΘQ,τ is proper and, by [2], Théorème 10.12, irreducible.
Using [2] once more, now Corollaire 10.11, one can find another 2-torsion point R ∈ Aτ such
that the three divisors ΘP,τ , ΘQ,τ , ΘR,τ intersect properly; here ΘR,τ is the divisor of the global
section sR,τ (z) := sP,τ (z −R) ∈ Γ(Aτ , L⊗2

τ ). We let νR denote the number of possible choices
for R. By extrapolating from the diagonal case, it can be shown that the six points in the
intersection ΘP,τ ∩ ΘQ,τ ∩ ΘR,τ are 2-torsion points (each with multiplicity 8). Furthermore,
one derives from that consideration that there exists a further 2-torsion point S ∈ Aτ such
that the divisor ΘS,τ of the global section sS,τ (z) := sP,τ (z − S) ∈ Γ(Aτ , L⊗2

τ ) has proper, i.e.,
empty intersection with ΘP,τ ∩ΘQ,τ ∩ΘR,τ . We let νS denote the number of possible choices
for S. With the notations of Remark 5.6 we conclude U4 ⊇ H3 \ H.

Let now τ degenerate to a point inH. We note that each one of the divisors ΘP,τ , ΘQ,τ , ΘR,τ ,
ΘS,τ constructed above then contains a 29th 2-torsion point (cf. [21], p. 3.105). As in
the preceding example it can be shown by a direct inspection that either the four divisors
ΘP,τ , ΘQ,τ , ΘR,τ , ΘS,τ have proper, i.e., empty intersection (as in the case τ /∈ H) or at least
three of them intersect properly. In terms of Remark 5.6 this means that U3 = H3.

For a given quadruple P,Q, R, S of 2-torsion points on Aτ as above, let Γ{P,Q,R,S} denote the
subgroup of Sp3(Z), consisting of those isomorphisms of Aτ , which fix P,Q, R, S as a set. Since
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the sections sP , sQ, sR, sS constructed above are in general position, we derive from Remark
5.6 that there is an explicitly given Siegel modular form F{P,Q,R,S} of weight 192 with respect
to Γ{P,Q,R,S} such that the equality∫

Aτ (C)

gP,τ (z) ∗ gQ,τ (z) ∗ gR,τ (z) ∗ gS,τ (z) = − log |F{P,Q,R,S}(τ)|2 − 192 log det η (13)

holds. Summing now both sides of (13) over the various choices for P,Q, R, S, one obtains two
sums, which can be subdivided into 36 partial sums according to the 36 different choices for
Q. Since ϑ(τ, 0) 6= 0, one possible choice for Q is Q = P ; the corresponding partial sum on the
right hand side leads to the Siegel modular form

G(τ) :=
∏

P,R,S

F{P,P,R,S}(τ)

of weight ν = 28 · νR · νS · 192 with respect to the subgroup of Sp3(Z), which permutes the 28
odd 2-torsion points and stabilizes the origin of Aτ , hence is nothing but Igusa’s group Γ3(1, 2)
(cf. [24], p. 793). The remaining 35 partial sums lead to Siegel modular forms of the same
weight, but with respect to the 35 different conjugate subgroups of Γ3(1, 2) inside of Sp3(Z)
(note that (Sp3(Z) : Γ3(1, 2)) = 36). Adding up, we obtain a Siegel modular form of weight
36 · ν with respect to the full modular group Sp3(Z), which vanishes by construction along H.
Since Sp3(Z)\H is irreducible and since Igusa’s χ18 ∈ M18(Sp3(Z)) (given by the product of
the 36 even theta functions, cf. [24], p. 814) vanishes also precisely along H, we conclude that∑

P,Q,R,S

∫
Aτ (C)

gP,τ (z) ∗ gQ,τ (z) ∗ gR,τ (z) ∗ gS,τ (z) = −2ν log |c · χ18(τ)|2 − 36ν log det η,

where c is a suitable non-zero constant.
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