
Elliptic Eisenstein series for PSL2(Z)

Jürg Kramer and Anna-Maria von Pippich

To the memory of Serge Lang

Abstract

Let Γ ⊂ PSL2(R) be a Fuchsian subgroup of the first kind acting by fractional linear
transformations on the upper half-plane H, and let Γ\H be the associated finite volume hy-
perbolic Riemann surface. Associated to any cusp of Γ\H, there is the classically studied non-
holomorphic (parabolic) Eisenstein series. In [11], Kudla and Millson studied non-holomorphic
(hyperbolic) Eisenstein series associated to any closed geodesic on Γ\H. Finally, in [9], Jor-
genson and the first named author introduced so-called elliptic Eisenstein series associated to
any elliptic fixed point of Γ\H. In the present article, we study elliptic Eisenstein series for
the full modular group PSL2(Z). We explicitly compute the Fourier expansion of the elliptic
Eisenstein series and derive from this its meromorphic continuation.
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1 Introduction

1.1. The theory of Eisenstein series plays a prominent role in the theory of automorphic functions
and automorphic forms. Classically, in the theory of holomorphic modular forms, the Eisenstein
series of weight 2k (k ∈ N, k ≥ 2) for the full modular group PSL2(Z) are defined by

E2k(z) :=
1
2

∑
(c,d)∈Z2

(c,d)=1

1
(cz + d)2k

(z = x+ iy ∈ C, y > 0).

The arithmetic significance of these series is reflected by the fact that their Fourier coefficients are
given by certain divisor sums.
More generally, in the theory of automorphic functions for Fuchsian subgroups Γ of the first kind
of PSL2(R), Eisenstein series are defined by

E(z, s) :=
∑

γ∈Γ∞\Γ

Im(γz)s (s ∈ C, Re(s) > 1);

here Γ∞ denotes the stabilizer of the cusp i∞ in the group Γ. For given s ∈ C with Re(s) > 1, the
Eisenstein series E(z, s) are C∞-functions in x, y. For given z ∈ C with Im(z) > 0, the series E(z, s)
are holomorphic functions in s as long as Re(s) > 1. It can be shown that the Eisenstein series
E(z, s) admit a meromorphic continuation to the whole s-plane. The significance of E(z, s) relies
on the fact that these series are eigenfunctions of the hyperbolic Laplacian ∆hyp for the continuous
spectrum. The classical approach to establishing the meromorphic continuation is based on the
explicit knowledge of the Fourier expansion of E(z, s). Other approaches rely on the meromorphic
continuation of the resolvent kernel of ∆hyp or Colin de Verdière’s method given in [3].
Observing that the series E(z, s) are associated to the cusp i∞, S. Kudla and J. Millson introduced
in [11] so-called hyperbolic Eisenstein series Ehyp(z, s) associated to geodesics in the upper half-
plane H, and proved a partial meromorphic continuation and a Kronecker limit-type formula for
these series. Following this point of view, J. Jorgenson and the first author were led to consider
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so-called elliptic Eisenstein series Eell(z, s) associated to elliptic fixed points z0 ∈ H for Γ. In fact,
these series were introduced in [9] (see also the unpublished paper [8]) in order to derive optimal
sup-norm bounds for cusp forms of weight 2 for the subgroup Γ. An alternative, more elementary
proof for these sup-norm bounds avoiding elliptic Eisenstein series is given in [7].
The elliptic Eisenstein series associated to an elliptic fixed point z0 ∈ H for the subgroup Γ is
defined by

Eell(z, s) =
∑

γ∈Γz0\Γ

sinh
(
%
(
σ−1

z0
γz
))−s (z 6= z0),

where Γz0 denotes the stabilizer of z0 in Γ, σz0 ∈ PSL2(R) is a scaling matrix for z0, i.e., σz0(i) = z0,
and %(z) denotes the hyperbolic distance from z to i. In the Ph.D. thesis [13] by the second named
author, the meromorphic continuation of the elliptic Eisenstein series Eell(z, s) for any Fuchsian
subgroup Γ of the first kind to the whole s-plane is proven using a variation of Colin de Verdière’s
method mentioned above. Moreover, various expansions of the series Eell(z, s) are computed and
a Kronecker limit type formula is established there.
In this note we study elliptic Eisenstein series in the special case Γ = PSL2(Z) and z0 = i.
Following the classical approach, the main goal of this paper is to establish the meromorphic
continuation of the series Eell(z, s) by means of its Fourier expansion thereby complementing work
carried out in [13] in the special case Γ = PSL2(Z). In order to achieve our goal, the Fourier
expansion of Eell(z, s) has to be explicitly computed and the growth of the Fourier coefficients has
to be controlled.

1.2. The paper is organized as follows. In Section 2, we recall and summarize basic notation and
definitions used in this article.
In Section 3, we recall the classical Poincaré series Pm(z, s) and relate them to the more recent
Poincaré-type series Vm(z, s) studied in [14]. We review how the meromorphic continuation of
Pm(z, s) can be obtained via its spectral expansion. Via the aforementioned relation we obtain
the meromorphic continuation of Vm(z, s) to the whole s-plane.
In Section 4, we define the elliptic Eisenstein series Eell(z, s) associated to the elliptic fixed point i of
PSL2(Z). We show that it is holomorphic for Re(s) > 1 and an automorphic function for PSL2(Z).
In contrast to the parabolic situation, the elliptic Eisenstein series fails to be an eigenfunction of
∆hyp; instead it satisfies the differential equation(

∆hyp − s(1− s)
)
Eell(z, s) = −s2Eell(z, s+ 2).

In Section 5, we calculate the Fourier coefficients of Eell(z, s). In order to simplify the exposition,
we restrict our study to the case z ∈ H with Im(z) > 1.
In Section 6, we obtain the meromorphic continuation of Eell(z, s) via its Fourier expansion. The
main task here is to first meromorphically continue themth Fourier coefficients am(y, s) of Eell(z, s)
and then to achieve suitable bounds for am(y, s) with respect to m. The main result is stated in
Theorem 6.10.

1.3. Acknowledgements. We would like to express our thanks to J. Jorgenson for his valuable
advice in the course of the write-up of this article. Furthermore, we would like to thank J. Funke,
O. Imamoglu, and U. Kühn for helpful discussions.
Both authors acknowledge support from the DFG Graduate School Berlin Mathematical School
and the DFG Research Training Group Arithmetic and Geometry.

2 Basic notation

2.1. Let Γ := PSL2(Z) be the modular group acting by fractional linear transformations on the
upper half-plane H := {z = x+ iy ∈ C | y > 0}, i.e., for γ =

(
a b
c d

)
∈ Γ and z ∈ H, we have

γz :=
az + b

cz + d
.
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We denote by FΓ a fundamental domain of Γ in H. By Γz := StabΓ(z) we denote the stabilizer of
z ∈ H in Γ, and we set

Γ∞ :=
{(

1 n
0 1

) ∣∣∣∣n ∈ Z
}
.

As usual, we put e(z) := exp(2πiz) and denote by ζ(s) the Riemann zeta function.
In the rectangular coordinates x, y, the hyperbolic line element ds2hyp, the hyperbolic volume
element µhyp, and the hyperbolic Laplacian ∆hyp on H are given by

ds2hyp =
dx2 + dy2

y2
, µhyp =

dx dy

y2
, ∆hyp = −y2

( ∂2

∂x2
+

∂2

∂y2

)
.

We recall that the hyperbolic volume volhyp(FΓ) of FΓ is given by

volhyp(FΓ) =
∫
FΓ

µhyp(z) =
π

3
.

By dH(z, w) we denote the hyperbolic distance from z ∈ H to w ∈ H.

2.2. Hyperbolic polar coordinates. For z = x + iy ∈ H, we define the hyperbolic polar
coordinates % = %(z), ϑ = ϑ(z) centered at i ∈ H by

%(z) := dH(i, z) , ϑ(z) := ](L, Tz),

where L denotes the positive y-axis and Tz is the tangent at the unique geodesic passing through
i and z at the point i.
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The relation between the x, y-coordinates and the %, ϑ-coordinates is expressed through the for-
mulas

x =
sinh(%) sin(ϑ)

cosh(%) + sinh(%) cos(ϑ)
, y =

1
cosh(%) + sinh(%) cos(ϑ)

. (1)

Using the above formulas, the hyperbolic line element and the hyperbolic Laplacian in terms of
the hyperbolic polar coordinates take the form

ds2hyp = sinh2(%)dϑ2 + d%2 , ∆hyp = − ∂2

∂%2
− 1

tanh(%)
∂

∂%
− 1

sinh2(%)
∂2

∂ϑ2
.

From the well-known formula for the hyperbolic distance (see [2], p. 131)

cosh
(
dH(z, w)

)
= 1 +

|z − w|2

2 Im(z) Im(w)
,

we obtain for z = x+ iy ∈ H and γ =
(

a b
c d

)
∈ Γ,

cosh
(
%(γz)

)
= cosh

(
dH(z, γ−1i)

)
=

1
2y

(
2y + (a2 + c2)

∣∣z − γ−1i
∣∣2).
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A straightforward computation yields

cosh
(
%(γz)

)
=

1
2y
(
(a2 + c2)(x2 + y2) + 2(ab+ cd)x+ (b2 + d2)

)
. (2)

2.3. Hypergeometric functions. For a, b, c ∈ C, c 6= −n (n ∈ N), and w ∈ C, we denote
Gauss’s hypergeometric function by F (a, b; c;w). For w ∈ C with |w| < 1 it is defined by the series

F (a, b; c;w) :=
∞∑

k=0

(a)k · (b)k

(c)k · k!
· wk,

where (λ)k := Γ(λ + k)/Γ(λ) (λ ∈ C, k ∈ N) is the Pochhammer symbol; for k ∈ N with k > 0,
we note the alternative formula (λ)k =

∏k−1
j=0 (λ+ j). For Re(c) > Re(b) > 0, the hypergeometric

function F (a, b; c;w) has the integral representation (see [1], formula 15.3.1)

F (a, b; c;w) =
Γ(c)

Γ(b)Γ(c− b)

1∫
0

tb−1(1− t)c−b−1(1− tw)−a dt. (3)

2.4. Parabolic Eisenstein series. For z ∈ H and s ∈ C, the parabolic Eisenstein series Epar is
given by

Epar(z, s) :=
∑

γ∈Γ∞\Γ

Im(γz)s.

The parabolic Eisenstein series is known to be holomorphic for s ∈ C with Re(s) > 1 with Fourier
expansion given by

Epar(z, s) = ys + ϕ(s)y1−s +
∑
n 6=0

ϕ(n, s)y1/2Ks−1/2(2π|n|y)e(nx), (4)

where Ks−1/2(·) is the modified Bessel function of the second kind,

ϕ(s) =
√
π Γ(s− 1/2)

Γ(s)
· ζ(2s− 1)

ζ(2s)
=

Λ(2s− 1)
Λ(2s)

,

and

ϕ(n, s) =
2πs|n|s−1/2

Γ(s)ζ(2s)

∑
d|n

d−2s+1 =
2

Λ(2s)

∑
ab=|n|

(a
b

)s−1/2

;

here we set Λ(s) := π−s/2Γ(s/2)ζ(s). The Fourier expansion (4) provides the meromorphic contin-
uation of Epar(z, s) to the whole s-plane with a simple pole at s = 1 with residue ress=1 Epar(z, s) =
1/ volhyp(FΓ) = 3/π, and other poles contributed by the non-trivial zeros of ζ(2s) in the strip
0 < Re(s) < 1/2. From the functional equation Λ(s) = Λ(1 − s), we get ϕ(s)ϕ(1 − s) = 1, and
hence the relation

ϕ(s)ϕ(n, 1− s) =
2 Λ(2s− 1)

Λ(2s)Λ(−2s+ 2)

∑
ab=|n|

( b
a

)s−1/2

=
2

Λ(2s)

∑
ab=|n|

(a
b

)s−1/2

= ϕ(n, s), (5)

which, using (4), proves the functional equation

Epar(z, s) = ϕ(s) Epar(z, 1− s). (6)
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3 Poincaré series

In this section we recall results for two types of Poincaré series which are mostly known to the
experts. However, for the lack of complete reference, some proofs have to be elaborated.

3.1. Definition. For z ∈ H, s ∈ C, and m ∈ Z, the Poincaré series Pm is defined by

Pm(z, s) :=
∑

γ∈Γ∞\Γ

Im(γz)s exp
(
−2π|m| Im(γz)

)
e
(
mRe(γz)

)
.

The Poincaré series is known to be holomorphic for s ∈ C with Re(s) > 1, since it can be majorized
by P0(z,Re(s)) = Epar(z,Re(s)).

3.2. Remark. For m 6= 0, the Poincaré series Pm(z, s) is bounded on H (see [10], p. 83) and
hence admits a spectral expansion in terms of the eigenfunctions ψj associated to the discrete
eigenvalues λj of ∆hyp and the parabolic Eisenstein series Epar, namely

Pm(z, s) =
∞∑

j=0

aj,m(s)ψj(z) +
1
4π

∞∫
−∞

a1/2+ir,m(s) Epar(z, 1/2 + ir) dr , (7)

where the coefficients aj,m(s), resp. a1/2+ir,m(s), are given by

aj,m(s) =
∫
FΓ

Pm(z, s)ψj(z)µhyp(z), resp. a1/2+ir,m(s) =
∫
FΓ

Pm(z, s)Epar(z, 1/2 + ir)µhyp(z).

The expansion (7) is absolutely and locally uniformly convergent for s ∈ C with Re(s) > 1.
As ususal, we enumerate the eigenvalues of the discrete spectrum by 0 = λ0 < λ1 ≤ λ2 ≤ . . .;
since Γ = PSL2(Z), we have λj = 1/4 + t2j = sj(1− sj), i.e., sj = 1/2 + itj with tj > 0, as long as
j > 0. For j = 0, the eigenfunction is given by ψ0(z) =

√
3/π. For j > 0, the eigenfunction ψj is

a cusp form and admits a Fourier expansion of the form

ψj(z) =
∑
n 6=0

ρj(n)y1/2Ksj−1/2(2π|n|y)e(nx). (8)

The eigenvalues of the continuous spectrum are of the form λ = 1/4 + r2 = s(1 − s), i.e., s =
1/2+ ir with r ∈ R. The corresponding eigenfunctions are given by the parabolic Eisenstein series
Epar(z, 1/2 + ir).

3.3. Proposition. For z ∈ H, s ∈ C with Re(s) > 1, and m 6= 0, the Poincaré series Pm(z, s)
has the following explicit spectral expansion:

Pm(z, s) 22s−1πs−1Γ(s)|m|s−1/2 =
∞∑

j=1

Γ(s− sj)Γ(s+ sj − 1)ρj(m)ψj(z)

+
1
4π

∞∫
−∞

Γ(s− 1/2− ir)Γ(s− 1/2 + ir)ϕ(m, 1/2 + ir) Epar(z, 1/2 + ir) dr. (9)

Proof. The proof can easily be deduced from the spectral expansion given for the function P̃m(z, s) =
πs−1/2Γ(s+ 1/2)−1|m|s−1/2Pm(z, s) in [12], p. 58. ¤

3.4. Proposition. For z ∈ H and m 6= 0, the Poincaré series Pm(z, s) admits a meromorphic
continuation to the whole s-plane with simple poles at s = sj −N and s = −sj −N + 1 (N ∈ N)
with residues

ress=sj−N Pm(z, s) =
(−1)N2−2sj+2N+1π−sj+N+1Γ(2sj −N − 1)

N ! Γ(sj −N)|m|sj−N−1/2

∑
s`=sj

ρ`(m)ψ`(z)
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and

ress=−sj−N+1 Pm(z, s) =
(−1)N22sj+2N−1πsj+NΓ(−2sj −N + 1)

N ! Γ(−sj −N + 1)|m|−sj−N+1/2

∑
s`=sj

ρ`(m)ψ`(z),

respectively.

Proof. Because of the lack of reference for the claimed residues, we have to discuss the proof
briefly. In order to obtain the desired meromorphic continuation we will follow closely [12] and
[10], and base our argument on the spectral expansion (9).
We start by discussing the meromorphic continuation of the discrete part

D(s) :=
∞∑

j=1

Γ(s− sj)Γ(s+ sj − 1)ρj(m)ψj(z)

of the spectral expansion (9). The argument given in [10], p. 87, shows that D(s) has a mero-
morphic continuation to the whole s-plane with simple poles at s = sj −N and s = −sj −N + 1
(N ∈ N) arising from the Γ-factors. For later purposes, we note the bound (see [10], p. 87, adapted
to the present situation) ∣∣D(s)

∣∣¿ y−3/2, (10)

where the implied constant depends only on s (not a pole), but is independent of z and m. The
dependence of the implied constant on s is uniform as long as s is contained in a compact set not
containing sj −N or −sj −N + 1 for some N ∈ N. For the residues we compute

ress=sj−N D(s) =
(−1)N

N !
Γ(2sj −N − 1)

∑
s`=sj

ρ`(m)ψ`(z)

and

ress=−sj−N+1D(s) =
(−1)N

N !
Γ(−2sj −N + 1)

∑
s`=sj

ρ`(m)ψ`(z),

respectively.
We now turn to the meromorphic continuation of the continuous part

Q(s) :=
1
4π

∞∫
−∞

Γ(s− 1/2− ir)Γ(s− 1/2 + ir)ϕ(m, 1/2 + ir) Epar(z, 1/2 + ir) dr (11)

of the spectral expansion (9). By substituting t := 1/2 + ir, the integral (11) can be rewritten as

Q(s) =
1

4πi

1/2+i∞∫
1/2−i∞

Γ(s− t)Γ(s− 1 + t)ϕ(m, 1− t) Epar(z, t) dt. (12)

By construction, the integral (12) exists for s ∈ C with Re(s) > 1 and represents a holomorphic
function in this range. The argument given in [10], p. 89, shows that Q(s) extends to a holomorphic
function for s ∈ C with Re(s) 6= −N+1/2, and for s = −N+1/2, where N ∈ N. In order to extend
Q(s) to the whole s-plane, we rewrite the integral (12) by means of a different path of integration
(see [12], p. 51) using the residue theorem as follows. Let s0 ∈ C with Re(s0) = −N+1/2 for some
N ∈ N and Im(s0) > 0, and let C(s0) denote the integration path, which runs on the vertical line
with Re(t) = 1/2 from −∞ to ∞ as before, but passes on the left-hand side around −s0 −N + 1
and on the right-hand side around s0 +N in such a way that the only poles of the integrand being
encircled by this new integration path are located at t = −s0 −N + 1 and t = s0 +N . For s with
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Re(s) > −N +1/2 being sufficiently close to s0 such that −s−N +1 and s+N are still encircled
by the path C(s0), we set

Q̃(s) =
1

4πi

∫
C(s0)

Γ(s− t)Γ(s− 1 + t)ϕ(m, 1− t) Epar(z, t) dt,

which is well defined by construction. Using the residue theorem and recalling (6) and (5), we
then compute

Q(s) =
1

4πi

∫
C(s0)

Γ(s− t)Γ(s− 1 + t)ϕ(m, 1− t) Epar(z, t) dt

− (−1)N

2N !
Γ(2s+N − 1)ϕ(m,−s−N + 1) Epar(z, s+N)

+
(−1)N

2N !
Γ(2s+N − 1)ϕ(m, s+N) Epar(z,−s−N + 1) = Q̃(s).

For s with Re(s) < −N + 1/2 being sufficiently close to s0, we define Q̃(s) as above and verify
again Q(s) = Q̃(s), now using Cauchy’s theorem. By the choice of the integration path C(s0) it
turns out that the integral

Q̃(s0) =
1

4πi

∫
C(s0)

Γ(s0 − t)Γ(s0 − 1 + t)ϕ(m, 1− t) Epar(z, t) dt

is also well defined. Proceeding in an analoguous way for s0 ∈ C with Re(s0) = −N + 1/2 for
some N ∈ N, but Im(s0) < 0, we obtain the analytic continuation of Q(s) to the whole s-plane.
All in all, these considerations show that Pm(z, s) admits a meromorphic continuation to the whole
s-plane with simple poles at s = sj −N and s = −sj −N + 1 (N ∈ N). The stated formulas for
the residues are easily obtained from the residue computations for D(s), taking into account that
the factor 2−2s+1π−s+1Γ(s)−1|m|−s+1/2 does not contribute further poles.
Before finishing the proof, we recall for later purposes that for s ∈ C, we have the bound (see [10],
p. 90) ∣∣Q(s)

∣∣¿ y1/2, (13)

where the implied constant depends only on s (not a pole), but is independent of z and m. ¤

3.5. Definition. For z ∈ H, s ∈ C, and m ∈ Z, the Poincaré series Vm is defined by

Vm(z, s) :=
∑

γ∈Γ∞\Γ

Im(γz)se
(
mRe(γz)

)
. (14)

The Poincaré series is known to be holomorphic for s ∈ C with Re(s) > 1, since it can be majorized
by V0(z,Re(s)) = Epar(z,Re(s)).

3.6. Lemma. For z ∈ H, s ∈ C with Re(s) > 1, and m 6= 0, we have the relation

Vm(z, s) =
∞∑

k=0

(2π|m|)k

k!
Pm(z, s+ k).

Proof. We first check the absolute and local uniform convergence of the series in the claimed
relation for fixed z ∈ H and s ∈ C with Re(s) > 1. Using the estimate

|cz + d| ≥ C |ci+ d|,
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where C = C(z) is a positive constant depending on z but which is independent of (c, d) ∈ R2, we
obtain the bound

∞∑
k=0

∣∣∣∣∣ (2π|m|)k

k!
Pm(z, s+ k)

∣∣∣∣∣ ≤
∞∑

k=0

(2π|m|)k

k!

∑
γ∈Γ∞\Γ

Im(γz)Re(s)+k

=
∞∑

k=0

(2π|m|)k

k!

∑
γ∈Γ∞\Γ

yRe(s)

|cz + d|2 Re(s)
· yk

|cz + d|2k

≤
∞∑

k=0

(2π|m|yC−2)k

k!

∑
γ∈Γ∞\Γ

yRe(s)

|cz + d|2 Re(s)
· 1
(c2 + d2)k

≤ exp(2π|m|yC−2) · Epar

(
z,Re(s)

)
.

This proves that the series in question converges absolutely and locally uniformly for s ∈ C with
Re(s) > 1.
Now the claimed relation can easily be derived by changing the order of summation; namely, we
compute

∞∑
k=0

(2π|m|)k

k!
Pm(z, s+ k)

=
∑

γ∈Γ∞\Γ

Im(γz)s exp
(
−2π|m| Im(γz)

)
e
(
mRe(γz)

) ∞∑
k=0

(2π|m|)k

k!
Im(γz)k

=
∑

γ∈Γ∞\Γ

Im(γz)s exp
(
−2π|m| Im(γz)

)
e
(
mRe(γz)

)
exp
(
2π|m| Im(γz)

)
= Vm(z, s).

This completes the proof of the lemma. ¤

3.7. Proposition. For z ∈ H and m 6= 0, the Poincaré series Vm(z, s) admits a meromorphic
continuation to the whole s-plane with simple poles at s = sj −2N and s = −sj −2N +1 (N ∈ N)
with residues

ress=sj−2N Vm(z, s) =
22N−1π−sj+2N+1Γ(sj −N − 1/2)
(2N)! Γ(−N + 1/2)|m|sj−2N−1/2

∑
s`=sj

ρ`(m)ψ`(z) (15)

and

ress=−sj−2N+1 Vm(z, s) =
22N−1πsj+2NΓ(−sj −N + 1/2)

(2N)! Γ(−N + 1/2)|m|−sj−2N+1/2

∑
s`=sj

ρ`(m)ψ`(z), (16)

respectively.

Proof. We start by proving that the Poincaré series Vm(z, s) has a meromorphic continuation to
the half-plane

H′N := {s ∈ C | Re(s) > −N}

for any N ∈ N. By Lemma 3.6, we can write

Vm(z, s) =
N∑

k=0

(2π|m|)k

k!
Pm(z, s+ k) +

∞∑
k=N+1

(2π|m|)k

k!
Pm(z, s+ k). (17)

We show that the series
∞∑

k=N+1

(2π|m|)k

k!
Pm(z, s+ k)
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is a holomorphic function on the half-plane H′N . For this we estimate as in the proof of Lemma
3.6, assuming s ∈ C with Re(s) > −N ,

∞∑
k=N+1

∣∣∣∣∣ (2π|m|)k

k!
Pm(z, s+ k)

∣∣∣∣∣
=

∞∑
k=N+1

∣∣∣∣∣ (2π|m|)N+1

k!/(k −N − 1)!
· (2π|m|)k−N−1

(k −N − 1)!
Pm

(
z, (s+N + 1) + (k −N − 1)

)∣∣∣∣∣
≤ (2π|m|)N+1

∞∑
k=0

∣∣∣∣∣ (2π|m|)k

k!
Pm(z, s+N + 1 + k)

∣∣∣∣∣
≤ (2π|m|)N+1 · exp(2π|m|yC−2) · Epar

(
z,Re(s) +N + 1

)
.

This proves that the series in question converges absolutely and locally uniformly for s ∈ C with
Re(s) > −N , and hence the holomorphicity statement.

Since the finite sum
∑N

k=0(2π|m|)k/k!Pm(z, s+k) is a meromorphic function on the whole s-plane
by Proposition 3.4, we conclude that Vm(z, s) has a meromorphic continuation to the half-plane
H′N . Since N was chosen arbitrarily, this proves the meromorphic continuation of Vm(z, s) to the
whole s-plane.
In order to determine the poles of Vm(z, s), we calculate its poles in the strip

S ′N := {s ∈ C | −N < Re(s) ≤ −N + 1}

for any N ∈ N. By considering Vm(z, s) with its decomposition (17) in the strip S ′N , we see that
the poles come from the finite sum FN (z, s) :=

∑N
k=0(2π|m|)k/k!Pm(z, s + k). By Proposition

3.4, FN (z, s) has poles in the strip S ′N at s = sj −N and s = −sj −N + 1. The explicit formula
for the residues of Pm(z, s) given in Proposition 3.4 now leads to the following residue of FN (z, s)
at s = sj −N :

ress=sj−N FN (z, s) =
N∑

k=0

(2π|m|)k

k!
ress=sj−(N−k) Pm(z, s)

=
N∑

k=0

(2π|m|)k

k!
(−1)N−k2−2sj+2(N−k)+1π−sj+(N−k)+1Γ(2sj − (N − k)− 1)

(N − k)! Γ(sj − (N − k))|m|sj−(N−k)−1/2

∑
s`=sj

ρ`(m)ψ`(z)

=
N∑

k=0

(−1)N−k2−2sj+2N−k+1π−sj+N+1Γ(2sj −N + k − 1)
k! (N − k)! Γ(sj −N + k)|m|sj−N−1/2

∑
s`=sj

ρ`(m)ψ`(z)

=
(−1)N 2N−1π−sj+N+1Γ(sj −N/2− 1/2)

N ! Γ(−N/2 + 1/2)|m|sj−N−1/2

∑
s`=sj

ρ`(m)ψ`(z).

This shows that the residue in question vanishes if N is odd, and that the residue of Vm(z, s)
at s = sj − 2N is given by (15). Analoguously, it is shown that the residue of FN (z, s) at
s = −sj −N + 1 is zero if N is odd, and that the residue of Vm(z, s) at s = −sj − 2N + 1 is given
by (16). ¤

4 Elliptic Eisenstein series

4.1. Definition. For z ∈ H with z 6= γi for any γ ∈ Γ, and s ∈ C, the elliptic Eisenstein series
is defined by

Eell(z, s) =
∑

γ∈Γi\Γ

sinh
(
%(γz)

)−s
.
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4.2. Lemma. (i) For z ∈ H with z 6= γi for any γ ∈ Γ, the elliptic Eisenstein series Eell(z, s)
converges absolutely and locally uniformly for s ∈ C with Re(s) > 1, and hence defines a holomor-
phic function.
(ii) The elliptic Eisenstein series Eell(z, s) is invariant under the action of Γ, i.e., we have
Eell(γz, s) = Eell(z, s) for any γ ∈ Γ.
(iii) For fixed s ∈ C with Re(s) > 1, the elliptic Eisenstein series Eell(z, s) converges absolutely
and uniformly for z in compacta K ⊆ H not containing any translate γi of i by γ ∈ Γ.

Proof. (i) To ease notation, we write s = σ+ it ∈ C; we assume that σ = Re(s) > 1. We fix z ∈ H
such that z 6= γi for any γ ∈ Γ. Since Γ acts properly discontinuously on H and z 6= γi for any
γ ∈ Γ, the minimum

R1(z) := min
γ∈Γ

dH(i, γz)

exists and is strictly positive. Introducing the quantity

C1(z) :=
1− exp

(
−2R1(z)

)
2

> 0,

we derive the inequality

1− exp
(
−2%(γz)

)
2

≥ C1(z)

for all γ ∈ Γ. From this we obtain the estimate

sinh
(
%(γz)

)
= exp

(
%(γz)

)
·
1− exp

(
−2%(γz)

)
2

≥ C1(z) · exp
(
%(γz)

)
,

again for all γ ∈ Γ. From this we derive the estimate∑
γ∈Γi\Γ

∣∣∣sinh
(
%(γz)

)−s
∣∣∣ = ∑

γ∈Γi\Γ

sinh
(
%(γz)

)−σ ≤ C1(z)−σ ·
∑

γ∈Γi\Γ

exp
(
−σ%(γz)

)
.

In order to complete the proof of (i), we are left to show the local uniform convergence of the
series ∑

γ∈Γi\Γ

exp
(
−σ%(γz)

)
for σ > 1. To do this, we introduce for r ∈ R≥0 the quantities

G(r) :=
{
γ ∈ Γi\Γ

∣∣ %(γz) < r
}
, N(r) := ]G(r).

We note that the number N(r) is finite, since Γ acts properly discontinously on H and z 6= γi for
any γ ∈ Γ; in particular, we have N(r) = 0 for 0 ≤ r ≤ R1(z).
For fixed r ∈ R>0, we are next going to estimate the number N(r). Let Br(i) denote the open
hyperbolic disk of radius r centered at i containing the finitely many translates γz of z for γ ∈ G(r).
Then, there exists a constant ε(z) > 0, depending on z, such that the open hyperbolic disks
Bε(z)(γz) of radius ε(z) centered at γz do not intersect for all γ ∈ G(r) and are contained in Br(i).
Consequently, we obtain

N(r) · volhyp

(
Bε(z)(γz)

)
≤ volhyp

(
Br(i)

) (
γ ∈ G(r)

)
.

This yields the estimate

N(r) ≤
4π sinh2

(
r/2
)

4π sinh2
(
ε(z)/2

) =
cosh(r)− 1

2 sinh2
(
ε(z)/2

) =
exp(r) + exp(−r)− 2

4 sinh2
(
ε(z)/2

)
< exp(r) · 1 + exp(−2r)

4 sinh2
(
ε(z)/2

) < C2(z) · exp(r) (18)
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with a suitable constant C2(z) > 0 depending on z.
For fixed R ∈ R>0, the monotone increasing step function N : [0, R] −→ N induces a Stieltjes mea-
sure dN(r) on the interval [0, R]. Since the function exp(−σr) : [0, R] −→ R>0 is continuous and
the function N(r) is of bounded variation, the function exp(−σr) is Riemann–Stieltjes integrable
with respect to N(r) on the interval [0, R]. Furthermore, since N(r) and exp(−σr) are bounded
on [0, R], the theorem of partial integration can be applied to give

∑
γ∈Γi\Γ
γ∈G(R)

exp
(
−σ%(γz)

)
=

R∫
0

exp(−σr)dN(r)

=
[
N(r) exp(−σr)

]R
0
−

R∫
0

N(r)d
(
exp(−σr)

)

=
[
N(r) exp(−σr)

]R
0

+

R∫
0

σN(r) exp(−σr)dr. (19)

Using (18), the first summand of (19) can be bounded as[
N(r) exp(−σr)

]R
0

= N(R) exp(−σR) < C2(z) exp
(
(1− σ)R

)
.

On the other hand, again using (18), the integral in (19) can be bounded as

R∫
0

σN(r) exp(−σr)dr < σC2(z)

R∫
0

exp
(
(1− σ)r

)
dr =

σC2(z)
1− σ

(
exp
(
(1− σ)R

)
− 1
)
.

Summing up, we arrive at∑
γ∈Γi\Γ

exp
(
−σ%(γz)

)
= lim

R→∞

∑
γ∈Γi\Γ
γ∈G(R)

exp
(
−σ%(γz)

)

≤ lim
R→∞

[
C2(z) exp

(
(1− σ)R

)
+
σC2(z)
1− σ

(
exp
(
(1− σ)R

)
− 1
)]

=
σC2(z)
σ − 1

,

keeping in mind that σ > 1. The absolute and local uniform convergence of the elliptic Eisenstein
series Eell(z, s) now follows for s ∈ C with Re(s) > 1.
(ii) From definition 4.1 we immediately deduce for s ∈ C with Re(s) > 1,

Eell(γz, s) = Eell(z, s)

for all γ ∈ Γ, provided that z 6= γi for any γ ∈ Γ.
(iii) Let finally K ⊆ H be a compact subset not containing any translate γi of i by γ ∈ Γ. Then,
the constants C1(z) and C2(z) constructed in the first part of the proof can be chosen uniformly
for all z ∈ K. For fixed s ∈ C with Re(s) > 1, the series Eell(z, s) therefore converges absolutely
and uniformly on K ⊆ H. ¤

4.3. Lemma. For z = x + iy ∈ H with z 6= γi for any γ ∈ Γ, and s ∈ C with Re(s) > 1, the
elliptic Eisenstein series Eell(z, s) is twice continuously differentiable with respect to x, y.

Proof. In order to prove the claim, we have to show in a first step that the series of partial
derivatives ∑

γ∈Γi\Γ

∂

∂x
sinh

(
%(γz)

)−s
,

∑
γ∈Γi\Γ

∂

∂y
sinh

(
%(γz)

)−s (20)
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converge absolutely and uniformly on compacta K ⊆ H not containing any translate γi of i by
γ ∈ Γ provided that σ = Re(s) > 1. To do this, we introduce for functions f ∈ C1(H) the notation

∇hypf(z) := y2
((∂f(z)

∂x

)2

+
(∂f(z)

∂y

)2)
.

Letting ϕ(x, y) := (a2 + c2)(x2 + y2) + 2(ab+ cd)x+ (b2 + d2), we have by (2),

sinh
(
%(γz)

)
=
√

cosh2
(
%(γz)

)
− 1 =

√(ϕ(x, y)
2y

)2

− 1 ,

from which we derive

∂

∂x
sinh

(
%(γz)

)
=

cosh
(
%(γz)

)
sinh

(
%(γz)

) · ∂
∂x

ϕ(x, y)
2y

= coth
(
%(γz)

)
· (a2 + c2)x+ (ab+ cd)

y
,

and

∂

∂y
sinh

(
%(γz)

)
= coth

(
%(γz)

)
·
(
(a2 + c2)− ϕ(x, y)

2y2

)
.

A straightforward computation yields

∇hyp sinh
(
%(γz)

)
= cosh2

(
%(γz)

)
, (21)

from which we deduce∣∣∣ ∂
∂x

sinh
(
%(γz)

)∣∣∣ ≤ y−1
√
∇hyp sinh

(
%(γz)

)
= y−1 cosh

(
%(γz)

)
,∣∣∣ ∂

∂y
sinh

(
%(γz)

)∣∣∣ ≤ y−1
√
∇hyp sinh

(
%(γz)

)
= y−1 cosh

(
%(γz)

)
.

By the choice of the compact set K, there is a positive constant CK such that the inequality
cosh

(
%(γz)

)
≤ CK · sinh

(
%(γz)

)
holds for all z ∈ K. Therefore, we obtain for z ∈ K,∣∣∣ ∂

∂x
sinh

(
%(γz)

)−s
∣∣∣ ≤ CK · |s| · y−1 · sinh

(
%(γz)

)−σ
,∣∣∣ ∂

∂y
sinh

(
%(γz)

)−s
∣∣∣ ≤ CK · |s| · y−1 · sinh

(
%(γz)

)−σ
.

The absolute and locally uniform convergence for the series (20) now follows from Lemma 4.2
provided that σ > 1.
To ease notation, we put for the second step x1 := x and x2 := y. We will then show that for
j, k = 1, 2 the series ∑

γ∈Γi\Γ

∂2

∂xj∂xk
sinh

(
%(γz)

)−s (22)

converge absolutely and uniformly on compacta K ⊆ H not containing any translate γi of i by
γ ∈ Γ provided that σ = Re(s) > 1. Setting f(z) := sinh

(
%(γz)

)
, we estimate for z ∈ K,∣∣∣ ∂2

∂xj∂xk
sinh

(
%(γz)

)−s
∣∣∣

=
∣∣∣(−s)(−s− 1) · f(z)−(s+2) · ∂f(z)

∂xj
· ∂f(z)
∂xk

+ (−s)f(z)−(s+1) · ∂
2f(z)

∂xj∂xk

∣∣∣
≤ |s2 + s| · f(z)−(σ+2) ·

∣∣∣∂f(z)
∂xj

∣∣∣ · ∣∣∣∂f(z)
∂xk

∣∣∣+ |s| · f(z)−(σ+1) ·
∣∣∣ ∂2f(z)
∂xj∂xk

∣∣∣
≤ C2

K · |s2 + s| · x−2
2 · f(z)−σ + |s| · f(z)−(σ+1) ·

∣∣∣ ∂2f(z)
∂xj∂xk

∣∣∣ .
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We are left to estimate the term |∂2f(z)/∂xj∂xk|. For this, we use the fact that for real functions
g(z) = g(x1, x2) defined on H with continuous first- and second-order partial derivatives, the
inequality

∣∣∣ ∂2g(z)
∂xj∂xk

∣∣∣ ≤ x−2
2

(√
∇hypg(z) +

√
∇2

hypg(z)√
∇hypg(z)

+ |∆hypg(z)|
)

holds for all z = x1 + ix2 ∈ H provided that ∇hypg(z) 6= 0 (see [5]). Using (21), we obtain

∇2
hyp sinh

(
%(γz)

)
= ∇hyp cosh2

(
%(γz)

)
= 4 cosh2

(
%(γz)

)
sinh2

(
%(γz)

)
,

which yields

∇2
hyp sinh

(
%(γz)

)
∇hyp sinh

(
%(γz)

) = 4 sinh2
(
%(γz)

)
.

This, together with the relation |∆hyp sinh
(
%(γz)

)
| = 2 sinh

(
%(γz)

)
+ sinh

(
%(γz)

)−1, leads to

√
∇hypf(z) +

√
∇2

hypf(z)√
∇hypf(z)

+ |∆hypf(z)| = cosh
(
%(γz)

)
+ 4 sinh

(
%(γz)

)
+ sinh

(
%(γz)

)−1
.

Therefore, by the choice of the compact set K, there is a positive constant C ′K such that the
inequality ∣∣∣ ∂2f(z)

∂xj∂xk

∣∣∣ ≤ C ′K · x−2
2 · sinh

(
%(γz)

)
holds for z ∈ K. Again, the absolute and locally uniform convergence for the series (22) now
follows from Lemma 4.2 provided that σ > 1.
This concludes the proof of the lemma. ¤

4.4. Lemma. For z ∈ H with z 6= γi for any γ ∈ Γ, and s ∈ C with Re(s) > 1, the elliptic
Eisenstein series Eell(z, s) satisfies the differential equation(

∆hyp − s(1− s)
)
Eell(z, s) = −s2Eell(z, s+ 2).

Proof. Since the differential operator

∆hyp = − ∂2

∂%2
− 1

tanh(%)
∂

∂%
− 1

sinh2(%)
∂2

∂ϑ2

is invariant under the action of Γ, it suffices by Lemma 4.3 to prove the equality(
∆hyp − s(1− s)

)
sinh(%)−s = −s2 sinh(%)−(s+2).

This follows immediately from the subsequent calculation

∆hyp sinh(%)−s = s(−s− 1) sinh(%)−(s+2) cosh2(%) + s sinh(%)−s + s sinh(%)−(s+2) cosh2(%)

= (−s2 − s+ s) sinh(%)−(s+2)
(
1 + sinh2(%)

)
+s sinh(%)−s

= −s2 sinh(%)−(s+2) + s(1− s) sinh(%)−s.

¤
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5 Fourier expansion of the elliptic Eisenstein series

5.1. Lemma. For z ∈ H with Im(z) 6= Im(γ−1i) for any γ ∈ Γ, and s ∈ C with Re(s) > 1, the
elliptic Eisenstein series Eell(z, s) admits the Fourier expansion

Eell(z, s) =
∑
m∈Z

am(y, s)e(mx),

where

am(y, s)

=
∑

γ=
(

a b
c d

)
∈Γi\Γ/Γ∞

e
(
m
ab+ cd

a2 + c2

) ∞∫
−∞

(
−1 +

(a2 + c2

2y
t2 +

(a2 + c2)2y2 + 1
2(a2 + c2)y

)2)−s/2

e(−mt)dt.

Proof. Since Eell(z + 1, s) = Eell(z, s), the series Eell(z, s) admits the Fourier expansion

Eell(z, s) =
∑
m∈Z

am(y, s)e(mx),

where

am(y, s) =

1∫
0

Eell(z, s)e(−mx)dx =
∑

γ=
(

a b
c d

)
∈Γi\Γ

1∫
0

sinh
(
%(γz)

)−s
e(−mx)dx

=
∑

γ=
(

a b
c d

)
∈Γi\Γ/Γ∞

∑
n∈Z

1∫
0

sinh
(
%(γ(z + n))

)−s
e(−mx)dx

=
∑

γ=
(

a b
c d

)
∈Γi\Γ/Γ∞

∞∫
−∞

sinh
(
%(γz)

)−s
e(−mx)dx.

Now, writing sinh2
(
%(γz)

)
= −1 + cosh2

(
%(γz)

)
, using (2), and substituting t := x + ab+cd

a2+c2 , we
obtain

cosh
(
%(γz)

)
=

1
2y

(
(a2 + c2)t2 + (a2 + c2)y2 +

1
a2 + c2

)
=
a2 + c2

2y
t2 +

(a2 + c2)2y2 + 1
2(a2 + c2)y

.

From this the claimed formula for am(y, s) follows immediately. ¤

5.2. Proposition. For z ∈ H with Im(z) > 1, and s ∈ C with Re(s) > 1, we have

a0(y, s) =
2s
√
π Γ(s− 1/2)

Γ(s)
· y1−s

∞∑
k=0

(s− 1
2 )k · ( s

2 )k

( s
2 + 1

2 )k · k!
· y−2k · V0(s+ 2k) ,

where

V0(s) :=
∑

γ=
(

a b
c d

)
∈Γi\Γ/Γ∞

1
(a2 + c2)s

.
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Proof. Letting m = 0, we derive from Lemma 5.1

a0(y, s) =
∑

γ=
(

a b
c d

)
∈Γi\Γ/Γ∞

b0,γ(y, s),

where

b0,γ(y, s) := 2

∞∫
0

(
−1 +

(a2 + c2

2y
t2 +

(a2 + c2)2y2 + 1
2(a2 + c2)y

)2)−s/2

dt

=

∞∫
0

(
−1 +

(a2 + c2

2y
t+

(a2 + c2)2y2 + 1
2(a2 + c2)y

)2)−s/2 dt√
t
.

Substituting

r :=
((a2 + c2)y + 1)2

(a2 + c2)2
(
t+

((a2 + c2)y + 1)2

(a2 + c2)2
)−1

,

we obtain

b0,γ(y, s) =
2sys(a2 + c2)s−1

((a2 + c2)y + 1)2s−1

1∫
0

rs−3/2(1− r)−1/2
(
1− 4(a2 + c2)y

((a2 + c2)y + 1)2
· r
)−s/2

dr.

Now using the integral representation (3) of Gauss’s hypergeometric function F (a′, b′; c′;w) with

a′ :=
s

2
, b′ := s− 1

2
, c′ := s, and w :=

4(a2 + c2)y
((a2 + c2)y + 1)2

,

which is justified since Re(c′) > Re(b′) = Re(s)− 1/2 > 0, we obtain

b0,γ(y, s) =
2sys(a2 + c2)s−1

((a2 + c2)y + 1)2s−1
·
√
π Γ(s− 1/2)

Γ(s)
· F
(s

2
, s− 1

2
; s;

4(a2 + c2)y
((a2 + c2)y + 1)2

)
.

Since Γ = PSL2(Z) and y > 1, we have

4(a2 + c2)y
((a2 + c2)y + 1)2

< 1,

and so the hypergeometric function in question can be represented as a series, which shows that

F
(s

2
, s− 1

2
; s;

4(a2 + c2)y
((a2 + c2)y + 1)2

)
= F

(
s− 1

2
,
s

2
; s;

4(a2 + c2)y
((a2 + c2)y + 1)2

)
.

Now, the hypergeometric function under consideration is of the form F (b′, a′; 2a′;w), which allows
us to apply the following formula (see [1], formula 15.3.17):

F (b′, a′; 2a′;w) = 22b′(1 +
√

1− w)−2b′F
(
b′, b′ − a′ +

1
2
; a′ +

1
2
;
(1−

√
1− w

1 +
√

1− w

)2)
. (23)

Again, since y > 1, we have√
1− 4(a2 + c2)y

((a2 + c2)y + 1)2
=

(a2 + c2)y − 1
(a2 + c2)y + 1

,

which leads to

F
(
s− 1

2
,
s

2
; s;

4(a2 + c2)y
((a2 + c2)y + 1)2

)
= 22s−1

( 2(a2 + c2)y
(a2 + c2)y + 1

)−2s+1

F
(
s− 1

2
,
s

2
;
s

2
+

1
2
;

1
(a2 + c2)2y2

)
= ((a2 + c2)y)−2s+1((a2 + c2)y + 1)2s−1F

(
s− 1

2
,
s

2
;
s

2
+

1
2
;

1
(a2 + c2)2y2

)
. (24)
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Adding up, we obtain

b0,γ(y, s) =
2s
√
π Γ(s− 1/2)

Γ(s)
· y1−s

(a2 + c2)s
· F
(
s− 1

2
,
s

2
;
s

2
+

1
2
;

1
(a2 + c2)2y2

)
.

Introducing the notation

g(s) :=
2s
√
π Γ(s− 1/2)

Γ(s)
,

we arrive at

a0(y, s) = g(s) · y1−s
∑

γ=
(

a b
c d

)
∈Γi\Γ/Γ∞

1
(a2 + c2)s

F
(
s− 1

2
,
s

2
;
s

2
+

1
2
;

1
(a2 + c2)2y2

)

= g(s) · y1−s
∑

γ=
(

a b
c d

)
∈Γi\Γ/Γ∞

1
(a2 + c2)s

∞∑
k=0

(s− 1
2 )k · ( s

2 )k

( s
2 + 1

2 )k · k!

( 1
(a2 + c2)2y2

)k

= g(s) · y1−s
∞∑

k=0

(s− 1
2 )k · ( s

2 )k

( s
2 + 1

2 )k · k!
· y−2k · V0(s+ 2k).

This completes the proof of the proposition. ¤

5.3. Remark. The statement of Proposition 5.2 can easily be generalized to the case z ∈ H with
Im(z) 6= Im(γ−1i) for any γ ∈ Γ as follows: When applying formula (23) in the case y < (a2+c2)−1,
formula (24) becomes

F
(
s− 1

2
,
s

2
; s;

4(a2 + c2)y
((a2 + c2)y + 1)2

)
= ((a2 + c2)y + 1)2s−1F

(
s− 1

2
,
s

2
; s+

1
2
; (a2 + c2)2y2

)
.

Therefore, we arrive at

a0(y, s) = g(s) · y1−s
∑

γ=
(

a b
c d

)
∈Γi\Γ/Γ∞

y>(a2+c2)−1

(a2 + c2)−s
∞∑

k=0

(s− 1
2 )k · ( s

2 )k

( s
2 + 1

2 )k · k!
·
(
(a2 + c2)y

)−2k

+ g(s) · ys
∑

γ=
(

a b
c d

)
∈Γi\Γ/Γ∞

y<(a2+c2)−1

(a2 + c2)s−1
∞∑

k=0

(s− 1
2 )k · ( s

2 )k

(s+ 1
2 )k · k!

·
(
(a2 + c2)y

)2k
.

5.4. Proposition. For z ∈ H with Im(z) > 1, s ∈ C with Re(s) > 1, and m 6= 0, we have

am(y, s) = 2sys
∞∑

k1=0

∞∑
k2=0

( s
2 )k1 · ( s

2 )k2

k1! · k2!
· I−m(y, s; k1, k2) · V−m(s+ 2k1 + 2k2),

where

Im(y, s; k1, k2) :=

∞∫
−∞

(y + it)−s−2k1(y − it)−s−2k2e(mt) dt

and

Vm(s) =
∑

γ∈Γi\Γ/Γ∞

Im(γ−1i)se
(
mRe(γ−1i)

)
.
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Proof. For m 6= 0, we derive from Lemma 5.1

am(y, s) =
∑

γ=
(

a b
c d

)
∈Γi\Γ/Γ∞

e
(
m
ab+ cd

a2 + c2

)
bm,γ(y, s) ,

where

bm,γ(y, s) :=

∞∫
−∞

(
−1 +

(a2 + c2

2y
t2 +

(a2 + c2)2y2 + 1
2(a2 + c2)y

)2)−s/2

e(−mt) dt . (25)

We write

− 1 +
(a2 + c2

2y
t2 +

(a2 + c2)2y2 + 1
2(a2 + c2)y

)2

=
(a2 + c2)2

(2y)2
(
t2 +

(
y +

1
a2 + c2

)2)(
t2 +

(
y − 1

a2 + c2

)2)
=

(a2 + c2)2

(2y)2
(
it+ y +

1
a2 + c2

)(
−it+ y +

1
a2 + c2

)(
it+ y − 1

a2 + c2

)(
−it+ y − 1

a2 + c2

)
=

(a2 + c2)2

(2y)2
(y + it)2(y − it)2

(
1− 1

(a2 + c2)2(y + it)2
)(

1− 1
(a2 + c2)2(y − it)2

)
. (26)

Since y > 1, we have the estimate

max
−∞<t<∞

( 1
|(a2 + c2)2(y ± it)2|

)
=

1
(a2 + c2)2y2

< 1,

and hence we can write(
1− 1

(a2 + c2)2(y ± it)2
)−s/2

=
∞∑

k=0

( s
2 )k

k!(a2 + c2)2k
· (y ± it)−2k .

Therefore, we obtain

bm,γ(y, s) =
(2y)s

(a2 + c2)s

∞∑
k1=0

∞∑
k2=0

( s
2 )k1 · ( s

2 )k2

k1! · k2! · (a2 + c2)2(k1+k2)

×
∞∫

−∞

(y + it)−s−2k1(y − it)−s−2k2e(−mt) dt , (27)

from which the statement follows. ¤

5.5. Remark. The statement of Proposition 5.4 can be generalized to the case z ∈ H with
Im(z) 6= Im(γ−1i) for any γ ∈ Γ. In this case the Fourier coefficient in question becomes

am(y, s) =
∑

γ=
(

a b
c d

)
∈Γi\Γ/Γ∞

y>(a2+c2)−1

e
(
m
ab+ cd

a2 + c2

)
b(>)
m,γ(y, s) +

∑
γ=
(

a b
c d

)
∈Γi\Γ/Γ∞

y<(a2+c2)−1

e
(
m
ab+ cd

a2 + c2

)
b(<)
m,γ(y, s) ,

where

b(>)
m,γ(y, s) =

2sys

(a2 + c2)1−s

∞∑
k1=0

∞∑
k2=0

( s
2 )k1 · ( s

2 )k2

k1! · k2!
· I−m/(a2+c2)

(
(a2 + c2)y, s; k1, k2

)
, (28)

b(<)
m,γ(y, s) =

2sy1−s

(a2 + c2)s

∞∑
k1=0

∞∑
k2=0

( s
2 )k1 · ( s

2 )k2

k1! · k2!
· I−my

( 1
(a2 + c2)y

, s; k1, k2

)
. (29)
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Here b(>)
m,γ(y, s) is obtained as in the proof of Proposition 5.4 (after a suitable substitution in (27)),

whereas b(<)
m,γ(y, s) is obtained by rewriting (26) as

−1 +
(a2 + c2

2y
t2 +

(a2 + c2)2y2 + 1
2(a2 + c2)y

)2

=
(a2 + c2)2y2

4

( 1
(a2 + c2)y

+
it

y

)2( 1
(a2 + c2)y

− it

y

)2

×

(
1−

( 1
(a2 + c2)y

+
it

y

)−2
)(

1−
( 1

(a2 + c2)y
− it

y

)−2
)
,

which, after using the expansion(
1−

( 1
(a2 + c2)y

± it

y

)−2
)−s/2

=
∞∑

k=0

( s
2 )k

k!
·
( 1

(a2 + c2)y
± it

y

)−2k

,

yields the claimed formula (again after a suitable substitution in the corresponding integral).

5.6. Remark. The series Vm(s) (m ∈ Z) of Propositions 5.2 and 5.4 can be rewritten as follows:
Consider the anti-isomorphism φ : Γ → Γ given by γ 7→ γ−1. Since φ(Γ∞) = Γ∞ and φ(Γi) = Γi,
we have φ(Γ∞\Γ/Γi) = Γi\Γ/Γ∞. Therefore, we obtain

Vm(s) =
∑

γ∈Γi\Γ/Γ∞

Im(γ−1i)se
(
mRe(γ−1i)

)
=

∑
γ∈Γ∞\Γ/Γi

Im(γi)se
(
mRe(γi)

)
=

1
2
Vm(i, s)

with the Poincaré series (14) evaluated at z = i. Note that the series V0(s) multiplied by ζ(2s)
equals the Dedekind zeta function associated to the field of Q(i).

6 Meromorphic continuation of the elliptic Eisenstein series

6.1. Lemma. The series

V0(s) =
∑

γ=
(

a b
c d

)
∈Γi\Γ/Γ∞

1
(a2 + c2)s

converges absolutely and locally uniformly for s ∈ C with Re(s) > 1, and hence defines a holomor-
phic function. It has a meromorphic continuation to the whole s-plane with a simple pole at s = 1
and poles at s = ρ/2, where ρ is a non-trivial zero of ζ(s). Furthermore, we have V0(1/2) = 0.

Proof. Since V0(s) = Epar(i, s)/2, the claimed assertions immediately follow from the known prop-
erties of the parabolic Eisenstein series Epar(z, s) recalled in Section 2.4. In particular, the vanishing
of V0(s) at s = 1/2 follows from the functional equation (6) by observing that ϕ(1/2) = −1. ¤

6.2. Lemma. For z ∈ H with Im(z) > 1, and N ∈ N, the series

∞∑
k=N+1

(s− 1
2 )k · ( s

2 )k

Γ( s
2 + 1

2 + k) · k!
· y−2k · V0(s+ 2k)

converges absolutely and locally uniformly for s ∈ C with Re(s) > −2N − 1, and hence defines a
holomorphic function.

Proof. Fix N ∈ N, and let s ∈ C with Re(s) > −2N − 1. Then, for k ∈ N, we define the functions

fk(y, s) := gk(y, s) · V0(s+ 2k), where gk(y, s) :=
(s− 1

2 )k · ( s
2 )k

Γ( s
2 + 1

2 + k) · k!
· y−2k.

If k ≥ N + 1, we have Re(s + 2k) ≥ Re(s) + 2N + 2 > 1, whence the functions V0(s + 2k) are
holomorphic. Since the functions gk(y, s) are also holomorphic in the range under consideration,
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the functions fk(y, s) are holomorphic for s ∈ C with Re(s) > −2N − 1 as long as k ≥ N + 1. We
now estimate

∞∑
k=N+1

∣∣fk(y, s)
∣∣ ≤ V0

(
Re(s) + 2N

) ∞∑
k=N+1

∣∣gk(y, s)
∣∣.

Since the ratio of successive terms in the latter series has limit

lim
k→∞

|gk+1(y, s)|
|gk(y, s)|

= lim
k→∞

∣∣∣∣∣
(
s− 1

2 + k
)(

s
2 + k

)(
s
2 + 1

2 + k
)
(1 + k)

· 1
y2

∣∣∣∣∣ = 1
y2

< 1,

we derive from d’Alembert’s criterion that the series
∑∞

k=N+1 fk(y, s) converges absolutely and
locally uniformly for s ∈ C with Re(s) > −2N − 1, which proves the claim. ¤

6.3. Proposition. For z ∈ H with Im(z) > 1, the function a0(y, s) has a meromorphic continu-
ation to the whole s-plane with possible poles at s = 1 − 2N , s = ρ/2 − 2N , s = 1/2 − 2N , and
s = −1/2− 2N (N ∈ N), where ρ is a non-trivial zero of ζ(s).

Proof. We start by proving that the function a0(y, s) has a meromorphic continuation to the
half-plane

HN := {s ∈ C | Re(s) > −2N − 1}

for any N ∈ N. By Proposition 5.2 and the duplication formula for the Γ-function, we can write,
using the notation from the proof of Lemma 6.2,

a0(y, s) =
2s
√
π Γ(s− 1

2 )Γ( s
2 + 1

2 )
Γ(s)

· y1−s

(
N∑

k=0

fk(y, s) +
∞∑

k=N+1

fk(y, s)

)

=
2π Γ(s− 1

2 )
Γ( s

2 )
· y1−s

(
N∑

k=0

fk(y, s) +
∞∑

k=N+1

fk(y, s)

)
. (30)

Since Re(s) > −2N − 1 by assumption, Lemma 6.2 proves that the series
∑∞

k=N+1 fk(y, s) is a
holomorphic function on the half-plane HN . Since the finite sum

∑N
k=0 fk(y, s) is a meromor-

phic function on the whole s-plane by Lemma 6.1, we conclude that a0(y, s) has a meromorphic
continuation to the half-plane HN . Since N was chosen arbitrarily, this proves the meromorphic
continuation of a0(y, s) to the whole s-plane.
In order to determine the poles of a0(y, s), we calculate its poles in the strip

SN := {s ∈ C | − 2N − 1 < Re(s) ≤ −2N + 1}

for any N ∈ N. By considering a0(y, s) with its decomposition (30) in the strip SN , we see that
the poles come from the finite sum

∑N
k=0 fk(y, s), which has poles in the strip SN arising from

the function fN (y, s), more precisely from the factor V0(s+2N) at s = 1− 2N and s = ρ/2− 2N ,
where ρ is a non-trivial zero of ζ(s), and from the Γ-factor Γ(s − 1/2) at s = 1/2 − 2N and
s = −1/2−2N . Therefore, the possible poles of a0(y, s) in the strip SN are located at s = 1−2N ,
s = ρ/2− 2N , s = 1/2− 2N , and s = −1/2− 2N , as claimed. ¤

6.4. Remark. Using Remark 5.3, one can establish the meromorphic continuation of a0(y, s)
to the whole s-plane in the more general case Im(z) 6= Im(γ−1i) for any γ ∈ Γ, using the same
techniques as in Lemma 6.2 and Proposition 6.3 applied accordingly to the modified situation.
The poles of a0(y, s) turn out to be same as in the case Im(z) > 1.

6.5. Lemma. For y > 1, s ∈ C, m 6= 0, and k1, k2 ∈ N, let Im(y, s; k1, k2) denote the integral

Im(y, s; k1, k2) :=

∞∫
−∞

(y + it)−s−2k1(y − it)−s−2k2e(mt) dt .

Then, the following assertions hold:
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(i) The integral Im(y, s; k1, k2) converges absolutely and locally uniformly for s ∈ C with Re(s) >
1/2− k1 − k2, and hence defines a holomorphic function.

(ii) The integral Im(y, s; k1, k2) admits a holomorphic continuation to the whole s-plane.

(iii) Let Ω ⊆ C be a compact subset and let d ∈ N be such that Ω ⊆ {s ∈ C | Re(s) > 1/2− k1 −
k2 − d/2}. Then, we have for all s ∈ Ω the bound

∣∣Im(y, s; k1, k2)
∣∣¿ (k1 + k2)d

|m|d
· y−2(Re(s)+k1+k2+d/2)+1,

where the implied constant depends on Ω and d, but is independent of m and k1, k2.

Proof. (i) For s ∈ C with Re(s) > 1/2− k1 − k2, we have the estimate

∣∣Im(y, s; k1, k2)
∣∣ ≤ ∞∫

−∞

∣∣(y + it)−s−2k1(y − it)−s−2k2 e(mt)
∣∣ dt

=

∞∫
−∞

(y2 + t2)−Re(s)−k1−k2 dt

= y−2(Re(s)+k1+k2)+1

∞∫
−∞

(
1 +

t2

y2

)−Re(s)−k1−k2 dt

y

= y−2(Re(s)+k1+k2)+1 π Γ
(
Re(s)− 1/2 + k1 + k2

)
Γ
(
Re(s) + k1 + k2

)
≤ π · y−2(Re(s)+k1+k2)+1. (31)

For all s ∈ Ω, where Ω ⊆ {s ∈ C | Re(s) > 1/2− k1− k2} is a compact subset, we therefore obtain
the bound ∣∣Im(y, s; k1, k2)

∣∣ ≤ π,

which shows that the integral Im(y, s; k1, k2) converges absolutely and locally uniformly for s ∈ C
with Re(s) > 1/2− k1 − k2.
(ii) Let Re(s) > 1/2− k1 − k2. Integration by parts yields

Im(y, s; k1, k2) =
[
(y + it)−s−2k1(y − it)−s−2k2

e(mt)
2πim

]∞
t=−∞

+
1

2πm

∞∫
−∞

(s+ 2k1)(y + it)−s−2k1−1(y − it)−s−2k2e(mt) dt

− 1
2πm

∞∫
−∞

(s+ 2k2)(y + it)−s−2k1(y − it)−s−2k2−1e(mt) dt .

In absolute values, the boundary term equals∣∣∣∣(y + it)−s−2k1(y − it)−s−2k2
e(mt)
2πim

∣∣∣∣ = (y2 + t2)−Re(s)−k1−k2

2π|m|
.

Since Re(s) > 1/2− k1 − k2 and y2 + t2 > 1 for t ∈ (−∞,∞), we have

(y2 + t2)−Re(s)−k1−k2 < (y2 + t2)−1/2,
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from which we conclude that the boundary term vanishes. Therefore, we obtain the recurrence
formula

Im(y, s; k1, k2) =
(s+ 2k1)

2πm
Im

(
y, s; k1 +

1
2
, k2

)
− (s+ 2k2)

2πm
Im

(
y, s; k1, k2 +

1
2

)
. (32)

By part (i), both terms on the right-hand side are holomorphic for s ∈ C with Re(s) > −k1 − k2.
In this way we obtain the holomorphic continuation of Im(y, s; k1, k2) to the half-plane {s ∈
C | Re(s) > −k1 − k2}.
Let d ∈ N. Applying relation (32) d times, we arrive at a formula of the type

Im(y, s; k1, k2) =
1

(2πm)d

d∑
j=0

Pd,j(s; k1, k2) · Im
(
y, s; k1 +

j

2
, k2 +

d− j

2

)
, (33)

where Pd,j(s; k1, k2) is a polynomial in s and k1, k2 of degree d. In fact, one can prove by induction
on d that

Pd,j(s; k1, k2) = (−1)d−j ·
(

d

d− j

)
· (s+ 2k1)j · (s+ 2k2)d−j (0 ≤ j ≤ d).

Now all the terms in (33) are holomorphic for s ∈ C with

Re(s) > 1/2− (k1 + j/2)− (k2 + (d− j)/2) = 1/2− k1 − k2 − d/2.

Therefore, formula (33) yields the holomorphic continuation of Im(y, s; k1, k2) to the half-plane
{s ∈ C | Re(s) > 1/2 − k1 − k2 − d/2}. Since d ∈ N was chosen arbitrarily, this proves the
holomorphic continuation of Im(y, s; k1, k2) to the whole s-plane.
(iii) Let Ω ⊆ C be a compact subset and let d ∈ N be such that Ω ⊆ {s ∈ C | Re(s) > 1/2 −
k1 − k2 − d/2}. For s ∈ Ω, the function Im(y, s; k1, k2) is given by formula (33). Since Re(s) >
1/2− k1 − k2 − d/2 = 1/2− (k1 + j/2)− (k2 + (d− j)/2), the bound (31) provides the estimate∣∣∣∣Im(y, s; k1 +

j

2
, k2 +

d− j

2

)∣∣∣∣¿ y−2(Re(s)+k1+k2+d/2)+1,

where the implied constant is universal. Furthermore, letting s ∈ Ω, we have the bound∣∣Pd,j(s; k1, k2)
∣∣¿ kj

1 · k
d−j
2 ¿ (k1 + k2)d (0 ≤ j ≤ d),

where the implied constant depends on Ω and d, but is independent of m and k1, k2. Altogether,
as long as s ∈ Ω, we have the bound

∣∣Im(y, s; k1, k2)
∣∣¿ (d+ 1) · (k1 + k2)d · y

−2(Re(s)+k1+k2+d/2)+1

(2π|m|)d

¿ (k1 + k2)d

|m|d
· y−2(Re(s)+k1+k2+d/2)+1,

where the implied constant depends on Ω and d, but is independent of m and k1, k2. ¤

6.6. Lemma. For m 6= 0, the following assertions hold:

(i) The function Vm(s) admits a meromorphic continuation to the whole s-plane with possible
simple poles at s = sj − 2N and s = −sj − 2N + 1 (N ∈ N).

(ii) Let N ∈ N and Ω ⊆ {s ∈ C | Re(s) > −2N − 1} a compact subset not containing any pole of
Vm(s). Then, for all s ∈ Ω, we have the bound∣∣Vm(s)

∣∣¿ |m|2N+2,

where the implied constant depends on Ω and N , but is independent of m.
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(iii) Let N ∈ N and s̃ a pole of Vm(s) with Re(s̃) = −2N + 1/2. Then, the residue of Vm(s) at s̃
is bounded by ∣∣ ress=s̃ Vm(s)

∣∣¿ |m|2N ,

where the implied constant depends on s̃ and N , but is independent of m.

Proof. (i) Since we have Vm(s) = Vm(i, s)/2 by Remark 5.5, the claim follows immediately from
Proposition 3.7.
(ii) We will prove the claim more generally for the Poincaré series Vm(z, s) for any z ∈ H. For
s ∈ Ω, we then consider the decomposition

Vm(z, s) =
2N+1∑
k=0

(2π|m|)k

k!
Pm(z, s+ k) +

∞∑
k=2N+2

(2π|m|)k

k!
Pm(z, s+ k). (34)

From the proof of Proposition 3.7 we recall that the series on the right-hand side converges
absolutely for s ∈ Ω. Hence, we can rearrange the summation and find for s ∈ Ω,∣∣∣∣∣

∞∑
k=2N+2

(2π|m|)k

k!
Pm(z, s+ k)

∣∣∣∣∣ =
∣∣∣∣∣
∞∑

k=0

(2π|m|)2N+k+2

(2N + k + 2)!
Pm(z, s+ 2N + k + 2)

∣∣∣∣∣
= (2π|m|)2N+2

∣∣∣∣∣
∞∑

k=0

(2π|m|)k

(2N + k + 2)!

∑
γ∈Γ∞\Γ

Im(γz)s+2N+k+2 exp
(
−2π|m| Im(γz)

)
e
(
mRe(γz)

)∣∣∣∣∣
= (2π|m|)2N+2

∣∣∣∣∣ ∑
γ∈Γ∞\Γ

Im(γz)s+2N+2 exp
(
−2π|m| Im(γz)

)
e
(
mRe(γz)

) ∞∑
k=0

(2π|m| Im(γz))k

(2N + k + 2)!

∣∣∣∣∣
≤ (2π|m|)2N+2

∑
γ∈Γ∞\Γ

Im(γz)Re(s)+2N+2 exp
(
−2π|m| Im(γz)

) ∞∑
k=0

(2π|m| Im(γz))k

k!

= (2π|m|)2N+2 · Epar(z,Re(s) + 2N + 2) ¿ |m|2N+2,

where the implied constant depends on z, Ω, and N , but is independent of m.
In order to estimate the finite sum in the decomposition (34), we multiply the bounds (10) and
(13) by the factor 2−2s+1π−s+1Γ(s)−1|m|−s+1/2, and derive from the spectral expansion (9) of
Pm(z, s) for all s ∈ Ω the bound∣∣Pm(z, s+ k)

∣∣¿ |m|−Re(s)−k+1/2 ¿ |m|2N−k+3/2 (k = 0, . . . , 2N + 1),

where the implied constant depends on z and Ω, but is independent of m. Hence, for all s ∈ Ω,
we obtain

∣∣Vm(z, s)
∣∣¿ 2N+1∑

k=0

|m|k · |m|2N−k+3/2 + |m|2N+2 ¿ |m|2N+2,

where the implied constant depends on z, Ω, and N , but is independent of m. This proves the
second claim.
(iii) In order to prove the third claim, we recall formulas (15), resp. (16), together with the bound
(see [10], p. 86, adapted to our situation)∣∣ρ`(m)

∣∣2 ¿ |tj | exp(π|tj |) (` ∈ N : s` = sj = 1/2 + itj),

where the implied constant is universal. Then, we obtain∣∣ ress=sj−2N Vm(z, s)
∣∣¿ |m|−Re(sj)+2N+1/2 ¿ |m|2N ,

resp. ∣∣ ress=−sj−2N+1 Vm(z, s)
∣∣¿ |m|Re(sj)+2N−1/2 ¿ |m|2N ,
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where the implied constants depend on z, sj , and N , but are independent of m. ¤

6.7. Lemma. For z ∈ H with Im(z) > 1, m 6= 0, and N ∈ N, the series

2sys
∞∑

n=N+1

∑
k1+k2=n

( s
2 )k1 · ( s

2 )k2

k1! · k2!
· I−m(y, s; k1, k2) · V−m(s+ 2k1 + 2k2)

converges absolutely and locally uniformly for s ∈ C with Re(s) > −2N − 1, and hence defines a
holomorphic function.

Proof. Let Ω ⊆ {s ∈ C | Re(s) > −2N − 1} be a compact subset. For s ∈ Ω and k1, k2 ∈ N, we
define the functions

fm;k1,k2(y, s) := 2sys ( s
2 )k1 · ( s

2 )k2

k1! · k2!
· I−m(y, s; k1, k2) · V−m(s+ 2k1 + 2k2).

If k1 + k2 ≥ N + 1, we have Re(s + 2k1 + 2k2) ≥ Re(s) + 2N + 2 > 1, whence the functions
V−m(s+ 2k1 + 2k2) are holomorphic for s ∈ Ω. By Lemma 6.5 (ii), the functions I−m(y, s; k1, k2)
are holomorphic for s ∈ C. Therefore, the functions fm;k1,k2(y, s) are holomorphic for s ∈ Ω, as
long as k1 + k2 ≥ N + 1. Now choose d ∈ N with d > 2N + 1; then we have Ω ⊆ {s ∈ C | Re(s) >
1/2− k1 − k2 − d/2}, as long as k1 + k2 ≥ N + 1. Using Lemma 6.5 (iii), we estimate for s ∈ Ω,

∞∑
n=N+1

∑
k1+k2=n

∣∣fm;k1,k2(y, s)
∣∣

¿ V0(Re(s) + 2N + 2)
2Re(s)y−Re(s)−d+1

|m|d
∞∑

n=N+1

∑
k1+k2=n

|( s
2 )k1 | · |( s

2 )k2 |
k1! · k2!

· (k1 + k2)d

y2(k1+k2)

¿ y−Re(s)−d+1

|m|d
∞∑

n=N+1

nd

y2n

n∑
k1=0

(| s2 |)k1 · (| s2 |)n−k1

k1! · (n− k1)!
=
y−Re(s)−d+1

|m|d
∞∑

n=N+1

nd

y2n

(|s|)n

n!
,

where the implied constants depend on Ω, d, and N , but are independent of m and k1, k2. Since
the ratio of successive terms in the latter series has limit

lim
n→∞

∣∣∣∣∣ (n+ 1)d · (n+ |s|)
nd · (n+ 1)

· 1
y2

∣∣∣∣∣ = 1
y2

< 1,

we derive from d’Alembert’s criterion that the series in question converges absolutely and locally
uniformly for s ∈ C with Re(s) > −2N − 1, which proves the claim.
For later purposes, we note for s ∈ Ω the bound∣∣∣∣∣

∞∑
n=N+1

∑
k1+k2=n

fm;k1,k2(y, s)

∣∣∣∣∣¿ |m|−d, (35)

where d ∈ N with d > 2N + 1, and where the implied constant depends on z, Ω, d, and N , but is
independent of m. ¤

6.8. Proposition. For z ∈ H with Im(z) > 1, and m 6= 0, the following assertions hold:

(i) The function am(y, s) admits a meromorphic continuation to the whole s-plane with possible
simple poles at s = sj − 2N and s = −sj − 2N + 1 (N ∈ N).

(ii) Let N ∈ N and Ω ⊆ {s ∈ C | Re(s) > −2N − 1} a compact subset not containing any pole of
am(y, s). Then, for all s ∈ Ω, we have the bound∣∣am(y, s)

∣∣¿ |m|−d,

where d ∈ N with d > 2N + 1, and where the implied constant depends on z, Ω, d, and N ,
but is independent of m.
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(iii) Let N ∈ N and s̃ a pole of am(y, s) with Re(s̃) = −2N + 1/2. Then, the residue of am(y, s)
at s̃ is bounded by ∣∣ ress=s̃ am(y, s)

∣∣¿ |m|−d,

where d ∈ N with d > 2N + 3, and where the implied constant depends on z, s̃, d, and N ,
but is independent of m.

Proof. (i) As before, we obtain the meromorphic continuation of am(y, s) to the whole s-plane by
constructing its meromorphic continuations to the half-planes

HN := {s ∈ C | Re(s) > −2N − 1}

for any N ∈ N. Applying Proposition 5.4 and using the notation from the proof of Lemma 6.7,
we can write

am(y, s) =
N∑

n=0

∑
k1+k2=n

fm;k1,k2(y, s) +
∞∑

n=N+1

∑
k1+k2=n

fm;k1,k2(y, s). (36)

Since Re(s) > −2N − 1 by assumption, Lemma 6.7 proves that the series

∞∑
n=N+1

∑
k1+k2=n

fm;k1,k2(y, s)

is a holomorphic function on the half-planeHN . Since the first double sum in (36) is a meromorphic
function on the whole s-plane, we conclude that am(y, s) has a meromorphic continuation to the
half-plane HN .
In order to determine the poles of am(y, s), we calculate its poles in the strip

SN := {s ∈ C | − 2N − 1 < Re(s) ≤ −2N + 1}

for any N ∈ N. By considering am(y, s) with its decomposition (36) in the strip SN , we see that
the poles come from the finite sum

N∑
n=0

∑
k1+k2=n

fm;k1,k2(y, s) = 2sys
N∑

n=0

V−m(s+ 2n)
n∑

k1=0

( s
2 )k1 · ( s

2 )n−k1

k1! · (n− k1)!
· I−m(y, s; k1, n− k1),

which has possible simple poles at s = sj − 2N and s = −sj − 2N +1 in the strip SN arising from
the factors V−m(s+ 2n) (n = 0, . . . , N). Therefore, the possible poles of am(y, s) in the strip SN

are located at s = sj − 2N and s = −sj − 2N + 1 (N ∈ N).
(ii) In order to prove the second claim, we let s ∈ Ω, where Ω ⊆ HN is a compact subset not
containing any pole of am(y, s), and we decompose am(y, s) as in (36). Choosing now d′ ∈ N with
d′ > 4N+3 and applying the bounds obtained in Lemma 6.5 (iii) (note that Re(s) > 1/2−n−d′/2
for n = 0, . . . , N) and Lemma 6.6 (ii) (note that Re(s) + 2n > −2(N − n) − 1 for n = 0, . . . , N)
to the finite double sum in (36) and the bound (35) to the remaining series in (36), we obtain the
estimate

∣∣am(y, s)
∣∣¿ N∑

n=0

∣∣V−m(s+ 2n)
∣∣ n∑

k1=0

∣∣I−m(y, s; k1, n− k1)
∣∣+ |m|−d′

¿
N∑

n=0

|m|2(N−n)+2 · |m|−d′ + |m|−d′ ¿ |m|−(d′−2N−2),

where the implied constants depend on z, Ω, d′, and N , but are independent of m. Setting
d := d′ − 2N − 2 and observing that d > 2N + 1, the proof of part (ii) is complete.
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(iii) As in the proof of (ii), we work from the decomposition (36). We let s̃ be a pole of am(y, s)
with s̃ = −2N + 1/2, i.e., s̃ ∈ SN . As before, choosing d′ ∈ N with d′ > 4N + 3, the bounds
obtained in Lemmas 6.5 (iii) and 6.6 (iii) give the estimate

∣∣ ress=s̃ am(y, s)
∣∣¿ N∑

n=0

∣∣ ress=s̃ V−m(s+ 2n)
∣∣ n∑

k1=0

∣∣I−m(y, s̃; k1, n− k1)
∣∣

¿
N∑

n=0

|m|2(N−n) · |m|−d′ ¿ |m|−(d′−2N),

where the implied constants depend on z, s̃, d, and N , but are independent of m. Setting d :=
d′ − 2N and observing that d > 2N + 3, the proof of part (iii) is also complete. ¤

6.9. Remark. By means of Remark 5.5, one can establish the meromorphic continuation of
am(y, s) (m 6= 0) to the whole s-plane in the more general case Im(z) 6= Im(γ−1i) for any γ ∈ Γ
by applying Lemma 6.5 (noting that this lemma also holds for y > 0 and m ∈ R, m 6= 0) as well
as by using the same techniques as in Lemma 6.7 and Proposition 6.8 applied accordingly to the
modified situation. The poles of am(y, s) and their residues turn out to be same as in the case
Im(z) > 1. Moreover, also the statements (ii) and (iii) of Proposition 6.8 generalize to the case
Im(z) 6= Im(γ−1i) for any γ ∈ Γ.

6.10. Theorem. For z ∈ H with Im(z) > 1, the elliptic Eisenstein series Eell(z, s) has a
meromorphic continuation to the whole s-plane with possible poles at s = sΓ − 2N , s = sj − 2N ,
and s = −sj − 2N + 1 (N ∈ N), where sΓ is a pole of Γ(s− 1/2)Epar(i, s), and sj = 1/2 + itj with
tj > 0 and sj(1− sj) = λj a discrete eigenvalue of ∆hyp.

Proof. Let z ∈ H with Im(z) > 1. For s ∈ C with Re(s) > 1, we represent the elliptic Eisenstein
series Eell(z, s) by its Fourier expansion

Eell(z, s) =
∑
m∈Z

am(y, s)e(mx), (37)

where the coefficients am(y, s) are explicitly given by Propositions 5.2 and 5.4 for m = 0 and
m 6= 0, respectively. By Propositions 6.3 and 6.8, the functions am(y, s) admit a meromorphic
continuation to the whole s-plane.
In order to prove the meromorphic continuation of Eell(z, s) to the whole s-plane, let s ∈ Ω, where
Ω ⊆ {s ∈ C | Re(s) > −2N − 1} for some N ∈ N is a compact subset not containing any pole of
am(y, s) for all m ∈ Z. Choosing d ∈ N, d > 2N + 2, we have by Proposition 6.8 (ii) the bound∑

m∈Z
m6=0

∣∣am(y, s)e(mx)
∣∣¿ ∑

m∈Z
m 6=0

|m|−2,

where the implied constant depends on z, Ω, d, and N , but is independent of m. Therefore,
the Fourier expansion (37) converges absolutely and uniformly in Ω. This proves that Eell(z, s) is
holomorphic in s ∈ C away form the poles of am(y, s) for m ∈ Z.
Let now s̃ ∈ C be a pole of am(y, s) for m 6= 0 as in Proposition 6.8 (i); then, Re(s̃) = −2N + 1/2
for some N ∈ N. Choosing d ∈ N, d > 2N + 3, we estimate using Proposition 6.8 (iii),

lim
s→s̃

(s− s̃)
∑
m∈Z
m 6=0

am(y, s)e(mx) ¿
∑
m∈Z
m 6=0

∣∣ ress=s̃ am(y, s)
∣∣¿ ∑

m∈Z
m6=0

|m|−2,

where the implied constant depends on z, s̃, d, and N , but is independent of m.
In this way we obtain the meromorphic continuation of Eell(z, s) to the whole s-plane with possible
poles at s = sΓ − 2N , s = sj − 2N , and s = −sj − 2N + 1 (N ∈ N). The poles at s = sΓ − 2N
are contributed by a0(y, s); here sΓ denotes a pole of Γ(s− 1/2)Epar(i, s). ¤
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6.11. Remark. Using Remark 6.9, one can establish the meromorphic continuation of Eell(z, s)
to the whole s-plane in the more general case Im(z) 6= Im(γ−1i) for any γ ∈ Γ. The poles of
Eell(z, s) and their residues turn out the be same as in the case Im(z) > 1.

6.12. Remark. The elliptic Eisenstein series Eell(z, s) has a simple pole at s = 1 with residue

ress=1 Eell(z, s) = ress=1 a0(y, s) = 2π ress=1

(
V0(s)

Γ(s/2 + 1/2)

)
= π ress=1 Epar(i, s) = 3;

here we used the decomposition (30) for a0(y, s) with N = 0.
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