Übungsaufgaben zur Vorlesung

Lineare Algebra und Analytische Geometrie II

Prof. Dr. J. Kramer

Abgabetermin: 05.05.2014 in der Vorlesung

Bitte beachten:

JEDE Aufgabe auf einem neuen Blatt abgeben. JEDES Blatt mit Namen, Matrikelnummer und Übungsgruppe versehen.

Serie 3 (40 Punkte)

Aufgabe 1 (10 Punkte)

Es sei $E \in M_n(\mathbb{R})$ die Einheitsmatrix und $E_{i,j} \in M_n(\mathbb{R})$ die Matrix, die aus lauter Nullen besteht, mit Ausnahme des (i,j)-ten Eintrages, der 1 ist. Die Elementarmatrizen $T_{i,j}$, $S_i(\lambda)$ und $R_{i,j}(\lambda)$ seien durch

$$T_{i,j} = E - E_{i,i} - E_{j,j} + E_{i,j} + E_{j,i},$$

$$S_i(\lambda) = E + (\lambda - 1)E_{i,i} \quad (\lambda \in \mathbb{R} \setminus \{0\}),$$

$$R_{i,j}(\lambda) = E + \lambda E_{i,j} \quad (i \neq j, \lambda \in \mathbb{R})$$

definiert.

- (a) Zeigen Sie, dass die Inversen $T_{i,j}^{-1}$, $S_i(\lambda)^{-1}$ und $R_{i,j}(\lambda)^{-1}$ wieder Elementarmatrizen sind
- (b) Es sei $A \in M_n(\mathbb{R})$. Zeigen Sie:
 - (i) Die Linksmultiplikation $T_{i,j} \cdot A$ entspricht der Vertauschung der *i*-ten und *j*-ten Zeile von A.
 - (ii) Die Linksmultiplikation $S_i(\lambda) \cdot A$ entspricht der Multiplikation der *i*-ten Zeile von A mit λ .
 - (iii) Die Linksmultiplikation $R_{i,j}(\lambda) \cdot A$ entspricht der Addition des λ -fachen der j-ten Zeile von A zur i-ten Zeile von A.
- (c) Beweisen Sie, dass jede reguläre Matrix $A \in GL_n(\mathbb{R})$ als Produkt von Elementarmatrizen darstellbar ist.
- (d) Schreiben Sie die Matrix

$$\begin{pmatrix} 0 & 1 & 2 \\ 3 & 4 & 2 \\ 3 & 2 & 1 \end{pmatrix}$$

als Produkt von Elementarmatrizen.

Aufgabe 2 (10 Punkte)

Es seien $A, B \in M_n(\mathbb{R})$ zwei quadratische Matrizen. Es soll die Gleichheit

$$\det(A \cdot B) = \det(A) \cdot \det(B)$$

bewiesen werden.

- (a) Zeigen Sie die Aussage für den Fall, dass A singulär ist.
- (b) Nehmen Sie an, dass A eine der Elementarmatrizen aus Aufgabe 1 ist und beweisen Sie die Aussage für diesen Fall.
- (c) Verwenden Sie nun Aufgabe 1 c) und vollständige Induktion, um die Aussage für eine beliebige reguläre Matrix $A \in GL_n(\mathbb{R})$ zu beweisen.

Aufgabe 3 (10 Punkte)

Die komplexwertigen Matrizen $A \in M_2(\mathbb{C})$ und $B \in M_{2,3}(\mathbb{C})$ seien durch

$$A := \begin{pmatrix} \frac{1}{2} - \frac{3}{2}i & 1+i \\ -1-i & 1-i \end{pmatrix}, \ B := \begin{pmatrix} i & 2 & i \\ 1+\frac{1}{2}i & 3+i & 1-i \end{pmatrix}$$

gegeben.

- (a) Berechnen Sie $A \cdot B$.
- (b) Berechnen Sie A^{-1} .

Aufgabe 4 (10 Punkte)

Berechnen Sie die Inverse von

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 8 & -1 & 3 \\ 5 & 3 & -10 \end{pmatrix}$$

mithilfe der Adjungierten. Lösen Sie damit das Gleichungssystem

$$A \cdot \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 15 \\ 13 \\ 14 \end{pmatrix}.$$