Übungsaufgaben zur Vorlesung

Lineare Algebra und Analytische Geometrie II

Prof. Dr. J. Kramer

Abgabetermin: 02.06.2014 in der Vorlesung

Bitte beachten:

JEDE Aufgabe auf einem neuen Blatt abgeben. JEDES Blatt mit Namen, Matrikelnummer und Übungsgruppe versehen.

Serie 7 (40 Punkte)

Aufgabe 1 (10 Punkte)

Es sei V ein reeller Vektorraum. Welche der folgenden Abbildungen $\langle \,\cdot\,,\,\cdot\,\rangle:V\times V\to\mathbb{R}$ definieren ein Skalarprodukt? Begründen Sie Ihre Antworten.

(a) Für
$$V = \mathbb{R}^3$$
 und $x = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix}$, $y = \begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{pmatrix} \in V$ sei

$$\langle x, y \rangle := \eta_1(3\xi_1 - 2\xi_2 + \xi_3) + \eta_2(-2\xi_1 + 2\xi_2) + \eta_3(\xi_1 + 5\xi_3).$$

(b) Für
$$V=\mathbb{R}^2$$
 und $x=\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix},\,y=\begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix}\in V$ sei

$$\langle x, y \rangle := (\xi_1 + \eta_1)^2 + (\xi_2 + \eta_2)^2.$$

(c) Für $V = \mathcal{M}_n(\mathbb{R})$ und $A, B \in V$ sei

$$\langle A, B \rangle := \operatorname{tr}(A^t \cdot B)$$
.

(d) Für $V=V_2$ den Vektorraum der Polynome vom Grad kleiner oder gleich 2 mit reellen Koeffizienten und $p,q\in V$ sei

$$\langle p, q \rangle := \sum_{j=1}^{3} |p(j) + q(j)|.$$

Aufgabe 2 (10 Punkte)

Es sei

$$A = \begin{pmatrix} \alpha & \beta \\ \beta & \delta \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}).$$

Für $x = \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}$, $y = \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} \in \mathbb{R}^2$ sei $\langle x, y \rangle := (\xi_1, \xi_2) \cdot A \cdot \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix}$. Zeigen Sie, dass $\langle \cdot, \cdot \rangle$ genau dann ein Skalarprodukt auf \mathbb{R}^2 definiert, wenn $\alpha > 0$ und $\det(A) > 0$ gilt.

Aufgabe 3 (10 Punkte)

Für $x, y \in \mathbb{R}^3$ bezeichne $x \times y$ das Vektorprodukt aus Serie 2, Aufgabe 2. Weiter sei $\langle \cdot, \cdot \rangle$ das Standardskalarprodukt des \mathbb{R}^3 .

(a) Zeigen Sie, dass für
$$x=\begin{pmatrix} \xi_1\\\xi_2\\\xi_3 \end{pmatrix}, y=\begin{pmatrix} \eta_1\\\eta_2\\\eta_3 \end{pmatrix}, z=\begin{pmatrix} \zeta_1\\\zeta_2\\\zeta_3 \end{pmatrix} \in \mathbb{R}^3$$
 die Beziehungen

(i)
$$\langle x \times y, z \rangle = \det \begin{pmatrix} \xi_1 & \xi_2 & \xi_3 \\ \eta_1 & \eta_2 & \eta_3 \\ \zeta_1 & \zeta_2 & \zeta_3 \end{pmatrix}$$
,

(ii)
$$\langle x \times y, x \rangle = \langle x \times y, y \rangle = 0$$

gelten.

(b) Beweisen Sie für $x, y \in \mathbb{R}^3$ die Identität

$$||x \times y||^2 = ||x||^2 \cdot ||y||^2 - \langle x, y \rangle^2.$$

Zeigen Sie damit, dass für $x, y \neq 0$ mit dem Zwischenwinkel φ die Gleichheit

$$||x \times y|| = ||x|| \cdot ||y|| \cdot \sin(\varphi)$$

gilt. Interpretieren Sie dieses Ergebnis geometrisch.

Aufgabe 4 (10 Punkte)

Es sei $\langle \, \cdot \, , \, \cdot \, \rangle$ das Standardskalarprodukt des \mathbb{R}^3 und $v = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \in \mathbb{R}^3$. Die lineare Abbildung $f : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ sei gegeben durch

$$f(x) = x - \frac{\langle x, v \rangle}{\langle v, v \rangle} \cdot v, \quad x \in \mathbb{R}^3.$$

- (a) Bestimmen Sie jeweils eine Basis für die Räume $\ker(f)$ und $\operatorname{im}(f)$. Geben Sie eine Matrix zu f sowie ihr Minimalpolynom an.
- (b) Berechnen Sie für alle $w \in \text{im}(f)$ die Werte f(w) und $\langle w, v \rangle$.
- (c) Es sei V ein reeller Vektorraum. Eine lineare Abbildung $P:V\longrightarrow V$ heißt Projektion, falls $P^2=P$ gilt. Geben Sie alle möglichen Minimalpolynome einer Projektion P an. Begründen Sie.