Übungsaufgaben zur Vorlesung

Lineare Algebra und Analytische Geometrie II

Prof. Dr. J. Kramer

Abgabetermin: 16.06.2014 in der Vorlesung

Bitte beachten:

JEDE Aufgabe auf einem neuen Blatt abgeben. JEDES Blatt mit Namen, Matrikelnummer und Übungsgruppe versehen.

Serie 9 (30+10 Punkte)

Aufgabe 1 (10 Punkte)

Es bezeichne

$$O_n(\mathbb{R}) = \{ S \in M_n(\mathbb{R}) \mid S^{-1} = S^t \}$$

die Menge der orthogonalen Matrizen.

- (a) Zeigen Sie, dass $O_n(\mathbb{R})$ zusammen mit der Matrixmultiplikation eine Gruppe bildet.
- (b) Beweisen Sie, dass für $S \in O_n(\mathbb{R})$ die Beziehung $\det(S) = \pm 1$ gilt.
- (c) Zeigen Sie, dass eine Matrix S genau dann orthogonal ist, wenn ihre Zeilen- oder Spaltenvektoren bezüglich des Standardskalarprodukts des \mathbb{R}^n eine Orthonormalbasis des \mathbb{R}^n bilden.

Aufgabe 2 (10 Punkte)

Es seien $(V, \langle \cdot, \cdot \rangle)$ ein Euklidischer Vektorraum und $U \subseteq V$ ein linearer Unterraum. Das orthogonale Komplement U^{\perp} von U ist durch $U^{\perp} := \{v \in V | \langle v, u \rangle = 0, \forall u \in U\}$ definiert.

- (a) Zeigen Sie, dass U^{\perp} ein linearer Unterraum von V ist.
- (b) Zeigen Sie, dass die Gleichheit

$$V = U \oplus U^{\perp}$$

gilt.

Aufgabe 3 (10 Punkte)

Es seien $(V, \langle \cdot, \cdot \rangle)$ ein Euklidischer Vektorraum und $\mathcal{B} = \{b_1, \dots, b_n\}$ eine Orthonormalbasis von V. Eine orthogonale Abbildung $f \in O(V)$ heißt Drehung, wenn für die Matrix S von f bzgl. \mathcal{B} die Gleichheit $\det(S) = 1$ gilt.

(a) Zeigen Sie, dass die Menge der Drehungen eine Untergruppe von O(V) bildet.

- (b) Es sei $V = \mathbb{R}^3$, versehen mit dem Standardskalarprodukt. Zeigen Sie, dass jede Drehung $f \in \mathcal{O}(\mathbb{R}^3)$ eine *Drehachse* besitzt, es also einen 1-dimensionalen linearen Unterraum $U \subset \mathbb{R}^3$ gibt, so dass f(u) = u für alle $u \in U$ gilt.
- (c) Es seien $f_j:\mathbb{R}^3\to\mathbb{R}^3$ (j=1,2) Drehungen um die ξ_1 -Achse bzw. die ξ_3 -Achse des \mathbb{R}^3 mit der Eigenschaft

$$f_1: \begin{pmatrix} 0\\0\\1 \end{pmatrix} \mapsto \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\1\\1 \end{pmatrix} \text{ bzw. } f_2: \begin{pmatrix} 1\\0\\0 \end{pmatrix} \mapsto \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\0 \end{pmatrix}.$$

Bestimmen Sie die Matrizen von f_1 und f_2 bezüglich der Standardbasis des \mathbb{R}^3 . Bestimmen Sie die Drehachse sowie den Drehwinkel (im Bogenmaß) der Drehung $f_1 \circ f_2$.

Aufgabe 4* (10 Punkte)

Auf V_1 , dem Vektorraum der Polynome vom Grad kleiner oder gleich 1, sei ein Skalarprodukt durch

$$\langle p, q \rangle := \int_{0}^{1} p(X)q(X) \, \mathrm{d}X$$

definiert. Die lineare Abbildung $f:V_1\longrightarrow V_1$ sei durch

$$f(1) = 1 + \alpha X, \quad f(X) = \beta + \gamma X$$

gegeben. Für welche Wahlen von α, β, γ wird f zu einer orthogonalen Abbildung?