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Exercise sheet 10

Exercise 10.1
Let A =

⊕
d≥0

Ad be a graded ring and Proj(A) the set of relevant homogeneous prime ideals

of A. For a homogeneous ideal a ⊆ A, let

V+(a) :=
{
p ∈ Proj(A)

∣∣ p ⊇ a
}

denote the set of all relevant homogeneous prime ideals of A containing a.

(a) Show that the sets V+(a), where a ranges over the homogeneous ideals of A, satisfy
the axioms for closed sets in Proj(A).

(b) Show that V (a) ∩ Proj(A) = V+(a
h), where ah is the homogeneous ideal generated

by a. This shows that Proj(A) carries the topology induced from Spec(A).

Exercise 10.2
Let A =

⊕
d≥0

Ad be a graded ring, A+ :=
⊕
d≥1

Ad, and a+ := a∩A+ for a homogeneous ideal

a ⊆ A. Further, for a subset Y ⊆ Proj(A), define

I+(Y ) :=
(⋂
p∈Y

p
)
∩ A+.

Prove the following assertions:

(a) If a ⊆ A+ is a homogeneous ideal, then I+(V+(a)) =
√
a+. If Y ⊆ Proj(A) is a

subset, then V+(I+(Y )) = Y .

(b) The maps
Y 7→ I+(Y ) and a 7→ V+(a)

define mutually inverse, inclusion reversing bijections between the set of homoge-
neous ideals a ⊆ A+ such that a =

√
a+ and the set of closed subsets of Proj(A).

Via this bijection, the closed irreducible subsets correspond to ideals of the form p+,
where p is a relevant prime ideal.

(c) If a ⊆ A+ is a homogeneous ideal, then V+(a) = ∅ if and only if
√
a+ = A+. In

particular, Proj(A) = ∅ if and only if every element in A+ is nilpotent.



(d) The sets
D+(f) := Proj(A) \ V+(f)

for homogeneous elements f ∈ A+ form a basis of the topology of Proj(A).

(e) Let (fi)i be a family of homogeneous elements fi ∈ A+ and let a be the ideal
generated by the fi. Then, we have⋃

i

D+(fi) = Proj(A)⇐⇒
√
a+ = A+ .

Exercise 10.3
Let A =

⊕
d≥0

Ad be a graded ring. With the previous notations, we define a presheaf of

rings on Proj(A) by setting
OProj(A)(D+(f)) := A(f)

for a homogeneous f ∈ A+ and then defining

OProj(A)(U) := lim←−
f∈A+, homog.

D+(f)⊆U

OProj(A)(D+(f))

for an open subset U ⊆ Proj(A).

(a) Prove that (Proj(A),OProj(A)) is a ringed space.

(b) Prove that Proj(A) is a seperated scheme.

Elaborate every step of your proof as detailed as possible.


