Exercises BMS Basic Course Algebraic Geometry

Prof. Dr. J. Kramer

Solution to be presented on June 26th in the exercise class.

Exercise sheet 10

Exercise 10.1

Let $A = \bigoplus_{d \ge 0} A_d$ be a graded ring and $\operatorname{Proj}(A)$ the set of relevant homogeneous prime ideals of A. For a homogeneous ideal $\mathfrak{a} \subseteq A$, let

$$V_{+}(\mathfrak{a}) := \left\{ \mathfrak{p} \in \operatorname{Proj}(A) \, \big| \, \mathfrak{p} \supseteq \mathfrak{a} \right\}$$

denote the set of all relevant homogeneous prime ideals of A containing \mathfrak{a} .

- (a) Show that the sets $V_+(\mathfrak{a})$, where \mathfrak{a} ranges over the homogeneous ideals of A, satisfy the axioms for closed sets in $\operatorname{Proj}(A)$.
- (b) Show that $V(\mathfrak{a}) \cap \operatorname{Proj}(A) = V_+(\mathfrak{a}^h)$, where \mathfrak{a}^h is the homogeneous ideal generated by \mathfrak{a} . This shows that $\operatorname{Proj}(A)$ carries the topology induced from $\operatorname{Spec}(A)$.

Exercise 10.2

Let $A = \bigoplus_{d \ge 0} A_d$ be a graded ring, $A_+ := \bigoplus_{d \ge 1} A_d$, and $\mathfrak{a}_+ := \mathfrak{a} \cap A_+$ for a homogeneous ideal $\mathfrak{a} \subseteq A$. Further, for a subset $Y \subseteq \operatorname{Proj}(A)$, define

$$I_+(Y) := \left(\bigcap_{\mathfrak{p}\in Y} \mathfrak{p}\right) \cap A_+.$$

Prove the following assertions:

- (a) If $\mathfrak{a} \subseteq A_+$ is a homogeneous ideal, then $I_+(V_+(\mathfrak{a})) = \sqrt{\mathfrak{a}}_+$. If $Y \subseteq \operatorname{Proj}(A)$ is a subset, then $V_+(I_+(Y)) = \overline{Y}$.
- (b) The maps

$$Y \mapsto I_+(Y)$$
 and $\mathfrak{a} \mapsto V_+(\mathfrak{a})$

define mutually inverse, inclusion reversing bijections between the set of homogeneous ideals $\mathfrak{a} \subseteq A_+$ such that $\mathfrak{a} = \sqrt{\mathfrak{a}}_+$ and the set of closed subsets of $\operatorname{Proj}(A)$. Via this bijection, the closed irreducible subsets correspond to ideals of the form \mathfrak{p}_+ , where \mathfrak{p} is a relevant prime ideal.

(c) If $\mathfrak{a} \subseteq A_+$ is a homogeneous ideal, then $V_+(\mathfrak{a}) = \emptyset$ if and only if $\sqrt{\mathfrak{a}}_+ = A_+$. In particular, $\operatorname{Proj}(A) = \emptyset$ if and only if every element in A_+ is nilpotent.

(d) The sets

$$D_+(f) := \operatorname{Proj}(A) \setminus V_+(f)$$

for homogeneous elements $f \in A_+$ form a basis of the topology of $\operatorname{Proj}(A)$.

(e) Let $(f_i)_i$ be a family of homogeneous elements $f_i \in A_+$ and let \mathfrak{a} be the ideal generated by the f_i . Then, we have

$$\bigcup_{i} D_{+}(f_{i}) = \operatorname{Proj}(A) \Longleftrightarrow \sqrt{\mathfrak{a}}_{+} = A_{+}$$

Exercise 10.3

Let $A = \bigoplus_{d \ge 0} A_d$ be a graded ring. With the previous notations, we define a presheaf of rings on Proj(A) by setting

$$\mathcal{O}_{\operatorname{Proj}(A)}(D_+(f)) := A_{(f)}$$

for a homogeneous $f \in A_+$ and then defining

$$\mathcal{O}_{\operatorname{Proj}(A)}(U) := \varprojlim_{\substack{f \in A_+, \text{ homog.} \\ D_+(f) \subseteq U}} \mathcal{O}_{\operatorname{Proj}(A)}(D_+(f))$$

for an open subset $U \subseteq \operatorname{Proj}(A)$.

- (a) Prove that $(\operatorname{Proj}(A), \mathcal{O}_{\operatorname{Proj}(A)})$ is a ringed space.
- (b) Prove that $\operatorname{Proj}(A)$ is a seperated scheme.

Elaborate every step of your proof as detailed as possible.