Exercises BMS Basic Course

Commutative Algebra

Prof. Dr. J. Kramer

To be handed in on January 12th after the 1st lecture

Please hand in every exercise solution on a seperate sheet and do not forget to put your name and student ID on every sheet.

Exercise sheet 10 (40 points)

Exercise 1 (10 points)

Let A be a commutative ring with 1.

(a) Let

$$0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$$

be a short exact sequence of A-modules. Show that M is noetherian if and only if M' and M'' are noetherian.

(b) Prove that if M_i (i = 1, ..., n) are noetherian A-modules, then $\bigoplus_{i=1}^n M_i$ is a noetherian A-module.

Exercise 2 (10 points)

Let A be a commutative ring with 1.

- (a) Show that every surjective endomorphism of a noetherian A-module is an isomorphism.
- (b) Give an example of an injective endomorphism of a noetherian A-module which is not an isomorphism.

Exercise 3 (10 points)

- (a) Show that an ideal $\mathfrak{q} \subset \mathbb{Z}$ is primary if and only if $\mathfrak{q} = (0)$ or $\mathfrak{q} = (p^n)$ for some prime p and some $n \in \mathbb{N}_{>0}$.
- (b) Let A be a commutative ring with 1 and let $\mathfrak{p} \in \operatorname{Spec}(A)$. Show that a \mathfrak{p} -primary ideal $\mathfrak{q} \subset A$ need not be equal to some power of \mathfrak{p} . Reciprocally, show that a power \mathfrak{p}^n $(n \in \mathbb{N}_{>0})$ of \mathfrak{p} need not be primary, in general.

Exercise 4 (10 points)

Prove the following assertions:

(a) A noetherian topological space X which is Hausdorff must be a finite set with the discrete topology.

Please turn over!

- (b) A topological space X is noetherian if and only if every open subset $U\subseteq X$ is quasi-compact.
- (c) Let A be a commutative ring with 1. If A is a noetherian ring, then $\mathrm{Spec}(A)$ is a noetherian topological space.
- (d) Give an example to show that the converse of (c) does not hold in general.