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Exercise sheet 12 (40 points)
See overleaf for the definition of the terms integral and integral closure.

Exercise 1 (10 points)
Let A ⊆ B be commutative rings with 1. Show that the integral closure of A in B is a
subring of B containing A.

Exercise 2 (10 points)
Let A ⊆ B ⊆ C be commutative rings with 1. Let C be integral over B and B integral
over A. Conclude that C is integral over A.

Exercise 3 (10 points)
Let A ⊆ B be commutative rings with 1. Let B be integral over A.

(a) If b ⊆ B is an ideal and a := bc = A ∩ b, then B/b is integral over A/a.

(b) If S ⊆ A is a multiplicatively closed subset, then S−1B is integral over S−1A.

Exercise 4 (10 points)

(a) Let A be a commutative ring with 1, a ⊆ A an ideal, and b ∈ A. Show that b ∈ r(a)
if and only if 1 ∈ (a, 1− bX) ⊆ A[X].

(b) Let k be an algebraically closed field. Give an alternative proof of the Strong Null-
stellensatz, i.e.

a ⊆ k[X1, . . . , Xn] ideal =⇒ I(V (a)) = r(a),

adding a new variable X and using (a). This is the so-called “trick” of Rabinowitch.
Use the fact that, if b ⊂ k[X1, . . . , Xn, X] is a proper ideal, then V (b) 6= ∅.

(c) Let k be an algebraically closed field and a := (XY, Y Z, ZX, (X − Y )(X + 1)) ⊆
k[X, Y, Z] an ideal. Determine the irreducible components of the algebraic set V (a).

Please turn over !



Definitions
Let A ⊆ B be commutative rings with 1. An element b ∈ B is called integral over A,
if b is a root of a monic polynomial with coefficients in A, that is f(b) = 0 for some
f(X) = Xn + an−1X

n−1 + · · · + a0 ∈ A[X]. The set of elements of B which are integral
over A is called the integral closure of A in B. If the integral closure of A in B is equal
to B, we say that B is integral over A. If the integral closure of A in B is equal to A, we
say that A is integrally closed in B.


