Exercises BMS Basic Course Commutative Algebra

Prof. Dr. J. Kramer

To be handed in on November 3rd after the 1st lecture

Please hand in every exercise solution on a seperate sheet and do not forget to put your name and student ID on every sheet.

Exercise sheet 2 (40 points)

Exercise 1 (10 points)

Let A, B be commutative rings with 1 and let $f : A \to B$ be a ring homomorphism. Let $\mathfrak{a} \subseteq A$ and $\mathfrak{b} \subseteq B$ be ideals.

- (a) Show that $f^{-1}(\mathfrak{b})$ is an ideal of A, called the *contraction* $\mathfrak{b}^{\mathfrak{c}}$ of \mathfrak{b} . Show that $\mathfrak{b}^{\mathfrak{c}}$ is a prime ideal, if \mathfrak{b} is a prime ideal.
- (b) Show that $f(\mathfrak{a})$ is not necessarily an ideal of *B*. We define the *extension* $\mathfrak{a}^{\mathfrak{e}}$ of \mathfrak{a} to be the ideal generated by $f(\mathfrak{a})$ in *B*. Show that $\mathfrak{a}^{\mathfrak{e}}$ need not be a prime ideal, if \mathfrak{a} is a prime ideal.
- (c) Show that $\mathfrak{a} \subseteq \mathfrak{a}^{\mathfrak{ec}}$ and $\mathfrak{b} \supseteq \mathfrak{b}^{\mathfrak{ce}}$. Further, prove that $\mathfrak{a}^{\mathfrak{e}} = \mathfrak{a}^{\mathfrak{ece}}$ and $\mathfrak{b}^{\mathfrak{c}} = \mathfrak{b}^{\mathfrak{cec}}$.

Exercise 2 (10 points)

Let A be a commutative ring with 1.

- (a) Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ $(n \in \mathbb{N}, n > 1)$ be prime ideals of A and let \mathfrak{a} be an ideal contained in $\bigcup_{i=1}^n \mathfrak{p}_j$. Prove that $\mathfrak{a} \subseteq \mathfrak{p}_j$ for at least one j.
- (b) Let $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ $(n \in \mathbb{N}, n > 1)$ be ideals of A and let \mathfrak{p} be a prime ideal containing $\bigcap_{j=1}^n \mathfrak{a}_j$. Prove that $\mathfrak{a}_j \subseteq \mathfrak{p}$ for at least one j. Further, if $\mathfrak{p} = \bigcap_{j=1}^n \mathfrak{a}_j$, then $\mathfrak{p} = \mathfrak{a}_j$ for some j.

Exercise 3 (10 points)

Let $A := C([0, 1], \mathbb{R})$ denote the ring of continuous, real-valued functions on [0, 1].

(a) Let $x \in [0, 1]$. Show that the set

$$\mathfrak{m}_x := \left\{ f \in A \, \middle| \, f(x) = 0 \right\}$$

is a maximal ideal in A.

(b) Let $f_1, \ldots, f_n \in A$ $(n \in \mathbb{N}, n > 1)$ be functions without any common zero. Show that $f_1^2 + \cdots + f_n^2$ is a unit in A.

(c) Let $\mathfrak{a} \subset A$ be a proper ideal and let

 $V(\mathfrak{a}) := \left\{ a \in [0,1] \, \middle| \, f(a) = 0 \text{ for every } f \in \mathfrak{a} \right\}$

be the set of common zeros of all functions in \mathfrak{a} . Prove that $V(\mathfrak{a}) \neq \emptyset$.

(d) Deduce using (c) that $Max(A) = \{\mathfrak{m}_x \mid x \in [0, 1]\}$ and show that the map

$$[0,1] \to \operatorname{Max}(A), \quad x \mapsto \mathfrak{m}_x$$

is a bijection.

Exercise 4 (10 points)

Let A be a commutative ring with 1. We consider the set

$$\operatorname{Spec}(A) = \{ \mathfrak{p} \subsetneq A \mid \mathfrak{p} \text{ prime ideal} \}$$

of all prime ideals of A. For a subset $S \subseteq A$, let

$$V(S) := \left\{ \mathfrak{p} \in \operatorname{Spec}(A) \, \big| \, \mathfrak{p} \supseteq S \right\}$$

denote the set of all prime ideals of A which contain S.

- (a) Prove that $V(S) = V(\mathfrak{a}) = V(\mathfrak{r}(\mathfrak{a}))$, where \mathfrak{a} denotes the ideal generated by S in A.
- (b) Show that the sets V(S), where S ranges over the subsets of A, satisfy the axioms for closed sets in Spec(A). Conclude that Spec(A) is a topological space.
 (The resulting topology on Spec(A) is called the *Zariski topology*; the topological space Spec(A) is called the *prime spectrum of A*.)