Exercises BMS Basic Course Algebraic Geometry

Prof. Dr. J. Kramer

Solution to be presented on May 8th in the exercise class.

Exercise sheet 2

Exercise 2.1

Let k be an algebraically closed field. Let $X \subseteq \mathbb{A}^n(k)$ be an irreducible affine algebraic set and let $R(X) := k[X_1, \ldots, X_n]/I(X)$ denote its coordinate ring. Let \mathcal{O}_X denote the sheaf of regular functions on X. For $f \in R(X)$, prove the equality

$$\mathcal{O}_X(D(f)) = R(X)_f \subseteq \operatorname{Quot}(R(X)).$$

In particular, deduce that $\mathcal{O}_X(X) = \Gamma(X, \mathcal{O}_X) = R(X)$.

Exercise 2.2

Let X, Y be topological spaces and let $f : X \to Y$ be a continuous map. Let all occurring (pre)sheaves be (pre)sheaves of abelian groups.

(a) For a sheaf \mathcal{F} on X, we define the *direct image* sheaf $f_*\mathcal{F}$ by

$$f_*\mathcal{F}(V) := \mathcal{F}(f^{-1}(V))$$

for any open subset $V \subseteq Y$. Show that $f_*\mathcal{F}$ is a sheaf on Y.

(b) For a sheaf \mathcal{G} on Y, we define the *inverse image* sheaf $f^{-1}\mathcal{G}$ to be the sheaf associated to the presheaf

$$U \mapsto \varinjlim_{\substack{V \subseteq Y \text{ open} \\ f(U) \subseteq V}} \mathcal{G}(V),$$

where $U \subseteq X$ is an open subset. Show that f^{-1} is a functor from the category of sheaves on Y to the category of sheaves on X.

Exercise 2.3 (Ex. II.1.15. of [Har])

Let \mathcal{F}, \mathcal{G} be sheaves of abelian groups on a topological space X. For any open set $U \subseteq X$, show that the set $\operatorname{Hom}(\mathcal{F}|_U, \mathcal{G}|_U)$ of morphisms of the restricted sheaves has a natural structure of an abelian group. Show that the presheaf

$$U \mapsto \operatorname{Hom}(\mathcal{F}|_U, \mathcal{G}|_U),$$

where $U \subseteq X$ is an open subset, is a sheaf. It is called the *sheaf Hom* and is denoted by $\mathcal{H}om(\mathcal{F},\mathcal{G})$.

Notation: If $U \subseteq X$ is regarded as a topological subspace with the induced topology and if $i: U \to X$ denotes the inclusion map, then we call the sheaf $i^{-1}\mathcal{F}$ the restriction of \mathcal{F} to U and we denote it by $\mathcal{F}|_{U}$.

Exercise 2.4 (Ex. II.1.22. of [Har])

Let X be a topological space and let $\mathfrak{U} = \{U_i\}$ be an open cover of X. Furthermore, suppose we are given for each i a sheaf \mathcal{F}_i on U_i and for each pair i, j an isomorphism

$$\varphi_{ij}: \mathcal{F}_i \big|_{U_i \cap U_j} \xrightarrow{\sim} \mathcal{F}_j \big|_{U_i \cap U_j}$$

of sheaves such that

- (1) for each *i*: $\varphi_{ii} = id$,
- (2) for each i, j, k: $\varphi_{ik} = \varphi_{jk} \circ \varphi_{ij}$ on $U_i \cap U_j \cap U_k$.

Show that there exists a unique sheaf \mathcal{F} on X, together with isomorphisms of sheaves $\psi_i : \mathcal{F}|_{U_i} \xrightarrow{\sim} \mathcal{F}_i$ such that, for each i, j, the equality $\psi_j = \varphi_{ij} \circ \psi_i$ holds on $U_i \cap U_j$. We say that \mathcal{F} is obtained by glueing the sheaves \mathcal{F}_i via the isomorphisms φ_{ij} .