Exercises BMS Basic Course

Commutative Algebra

Prof. Dr. J. Kramer

To be handed in on November 10th after the 1st lecture

Please hand in every exercise solution on a seperate sheet and do not forget to put your name and student ID on every sheet.

Exercise sheet 3 (40 points)

Exercise 1 (10 points)

Let A be a commutative ring with 1 and let $\mathfrak{N}(A)$ be its nilradical. Show that the following are equivalent:

- (i) A has exactly one prime ideal.
- (ii) Every element of A is either a unit or nilpotent.
- (iii) The quotient ring $A/\mathfrak{N}(A)$ is a field.

Exercise 2 (10 points)

Let A be a commutative ring with 1. Let A[X] be the ring of polynomials in X with coefficients in A and let $f = a_n X^n + \ldots + a_1 X + a_0 \in A[X]$. Prove that

- (a) f is a unit in A[X] if and only if a_0 is a unit in A and a_1, \ldots, a_n are nilpotent.
- (b) f is nilpotent if and only if a_0, a_1, \ldots, a_n are nilpotent.
- (c) f is a zero-divisor if and only if there exists $a \in A$, $a \neq 0$, such that af = 0.

Exercise 3 (10 points)

- (a) Identify the sets $\operatorname{Spec}(\mathbb{Z})$, $\operatorname{Spec}(\mathbb{Z}/3\mathbb{Z})$, $\operatorname{Spec}(\mathbb{Z}/6\mathbb{Z})$, $\operatorname{Spec}(\mathbb{C}[X])$, $\operatorname{Spec}(\mathbb{C}[X]/(X^2))$, and $\operatorname{Spec}(\mathbb{R}[X]/(X^2+1))$ and compute $V(\mathfrak{p})$ for every occurring prime ideal \mathfrak{p} .
- (b) Prove that there is a bijection $Max(\mathbb{C}[X]) \to \mathbb{C}$.

Exercise 4 (10 points)

Let A be a commutative ring with 1. For $f \in A$, we define the distinguished or basic set

$$D(f) := \operatorname{Spec}(A) \setminus V(f)$$

to be the complement of V(f) in $\operatorname{Spec}(A)$. Show that the sets D(f) $(f \in A)$ are open and that they form a basis of open sets for the Zariski topology of $\operatorname{Spec}(A)$.

Please turn over!

Furthermore, prove that for $f,g\in A$ we have

(a)
$$D(f) \cap D(g) = D(f \cdot g)$$
.

(b)
$$D(f) = \emptyset \iff f$$
 is nilpotent.

(c)
$$D(f) = X \iff f \in A^{\times}$$
.

(d)
$$D(f) = D(g) \iff \mathfrak{r}(f) = \mathfrak{r}(g)$$
.
Here, $\mathfrak{r}(f)$ denotes the radical of the principal ideal (f) .