Exercises BMS Basic Course Algebraic Geometry

Prof. Dr. J. Kramer

Solution to be presented on June 5th in the exercise class.

Exercise sheet 7

Exercise 7.1 (Ex. II.2.18. of [Har])

- (a) Let A be a commutative ring with 1, X := Spec(A), and $f \in A$. Show that f is nilpotent if and only if D(f) is empty.
- (b) Let $\varphi : A \longrightarrow B$ be a homomorphism of rings, and let $f : Y := \operatorname{Spec}(B) \longrightarrow \operatorname{Spec}(A) =: X$ be the induced morphism of affine schemes. Show that φ is injective if and only if the map of sheaves $f^{\flat} : \mathcal{O}_X \longrightarrow f_*\mathcal{O}_Y$ is injective. Show furthermore in that case f is *dominant*, i.e., f(Y) is dense in X.
- (c) With the same notation, show that if φ is surjective, then f is a homeomorphism of Y onto a closed subset of X and $f^{\flat} : \mathcal{O}_X \longrightarrow f_*\mathcal{O}_Y$ is surjective.
- (d) Prove the converse to (c), namely, if $f: Y \longrightarrow X$ is a homeomorphism onto a closed subset and $f^{\flat}: \mathcal{O}_X \longrightarrow f_*\mathcal{O}_Y$ is surjective, then φ is surjective.

Hint: Consider $X' := \text{Spec}(A/\text{ker}(\varphi))$, and use (b) and (c).

Exercise 7.2

Let A be a commutative ring with 1 and $\mathfrak{a} \subseteq A$ an ideal. Let $X := \operatorname{Spec}(A)$ and $Y := \operatorname{Spec}(A/\mathfrak{a})$.

- (a) Show that the ring homomorphism $A \longrightarrow A/\mathfrak{a}$ induces a morphism of schemes $f: Y \longrightarrow X$, which is a closed immersion.
- (b) Show that for any ideal a ⊆ A, we obtain a structure of a closed subscheme on the closed set V(a) ⊆ X.
 In particular, every closed subset Y of X can have various subscheme structures corresponding to all the ideals a for which V(a) = Y.

Exercise 7.3 (Ex. II.3.17. of [Har])

A topological space X is a Zariski space if it is noetherian and every (nonempty) closed irreducible subset has a unique generic point. For example, let R be a discrete valuation ring and T := sp(Spec(R)) the underlying topological space of Spec(R). Then, T consists of two points, namely, t_0 , the maximal ideal of R, and t_1 , the zero ideal of R. The open subsets are \emptyset , $\{t_1\}$, and T. This is an irreducible Zariski space with generic point t_1 .

- (a) Show that if X is a noetherian scheme, then sp(X) is a Zariski space.
- (b) Show that any minimal nonempty closed subset of a Zariski space consists of one point. We call these *closed points*.
- (c) Show that a Zariski space X satisfies the axiom T_0 , i.e., given any two distinct points of X, there is an open set containing one but not the other.
- (d) If X is an irreducible Zariski space, then its generic point is contained in every nonempty open subset of X.
- (e) If x₀, x₁ are points of a topological space X, and if x₀ ∈ {x₁}, then we say that x₁ specializes to x₀, written x₁ → x₀. We also say x₀ is a specialization of x₁ or that x₁ is a generization of x₀. Now let X be a Zariski space. Show that the minimal points for the partial ordering determined by x₁ > x₀, if x₁ → x₀, are the closed points, and the maximal points are the generic points of the irreducible components of X. Show also that a closed subset contains every specialization of any of its points.

We say closed subsets are *stable under specialization*. Similarly, open subsets are *stable under generization*.

(f) Using the notation of the lecture, show that, if X is a noetherian topological space, then t(X) is a Zariski space. Furthermore, X itself is a Zariski space if and only if the map $\alpha : X \longrightarrow t(X)$ is a homeomorphism.