Exercises BMS Basic Course Commutative Algebra

Prof. Dr. J. Kramer

To be handed in on January 5th after the 1st lecture

Please hand in every exercise solution on a seperate sheet and do not forget to put your name and student ID on every sheet.

Exercise sheet 9 (20+20 points)

See overleaf for the definition of the terms directed set, direct system, and direct limit.

Exercise 1^* (10 points)

Let X be a set and $\{M_i\}_{i\in I}$ a family of subsets of X, which is closed under finite unions and intersections. Endowing I with the partial order \leq defined by $i \leq j$ if and only if $M_i \subseteq M_j$ makes I into a directed set. For $i \leq j$ in I, let $\varphi_{ij} : M_i \longrightarrow M_j$ be the inclusion map. Then, $\{M_i\}_{i\in I}$ together with the maps $\{\varphi_{ij}\}_{i\leq j\in I}$ is a direct system in the category of sets. Prove that the direct limit of this direct system exists and describe it.

Exercise 2 (20 points)

Let A be a commutative ring with 1 and \mathfrak{M}_A denote the category of A-modules and A-module-homomorphisms.

(a) Let (I, \leq) be a directed set, let $\{M_i\}_{i \in I}$ be a family of A-modules, and let $\{\varphi_{ij} : M_i \longrightarrow M_j\}_{i \leq j \in I}$ be a family of A-module-homomorphisms constituting a direct system in \mathfrak{M}_A . Construct a direct limit of this direct system by defining

$$\lim_{i \in I} M_i = \prod_{i \in I} M_i / \sim N_i$$

where

$$x_i \sim x_j \iff \exists k \in I : \varphi_{ik}(x_i) = \varphi_{jk}(x_j).$$

- (b) Show that if $\mu_i(x_i) = 0$, then there exists $i \leq j$ such that $\varphi_{ij}(x_i) = 0$ in M_j .
- (c) Let $A = \mathbb{Z}$ and let I be the set of positive integers equipped with the partial order given by $m \leq n$ if and only if m divides n. Set $M_n = \mathbb{Z}/n\mathbb{Z}$ and for $m \leq n$ define $\varphi_{mn} : \mathbb{Z}/m\mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z}$ to be the multiplication by n/m. Prove that the direct limit $\varinjlim_{n \in I} M_n$ is isomorphic to \mathbb{Q}/\mathbb{Z} .

Exercise 3^* (10 points)

Let \mathcal{F} be a presheaf of rings on a topological space X. Let $x \in X$. The stalk \mathcal{F}_x of \mathcal{F} at x is defined as

$$\mathcal{F}_x := \varinjlim_{\substack{U \subseteq X \text{ open} \\ U \ni x}} \mathcal{F}(U),$$

Please turn over !

where the direct limit is taken over all neighborhoods U of x, via the restriction maps of the presheaf \mathcal{F} .

Now, consider the presheaf \mathcal{F} of differentiable real-valued functions on the open unit disc $\{z \in \mathbb{C} \mid |z| < 1\}$ (in the classical topology). Show that the stalk of \mathcal{F} at the origin is a local ring.

Definitions

A directed set is a partially ordered set (I, \leq) such that for any $i, j \in I$ there exists a $k \in I$ such that $i \leq k$ and $j \leq k$.

Let \mathcal{C} be a category and (I, \leq) a direct system in \mathcal{C} indexed by I consists of a family $\{M_i\}_{i\in I}$ of objects of \mathcal{C} and a family of morphisms $\{\varphi_{ij} : M_i \longrightarrow M_j\}_{i\leq j\in I}$ satisfying

- (1) $\varphi_{ii} = \mathrm{id}_{M_i}$ for each $i \in I$, where $\mathrm{id}_{M_i} : M_i \longrightarrow M_i$ is the identity morphism;
- (2) $\varphi_{ik} = \varphi_{jk} \circ \varphi_{ij}$ whenever $i \leq j \leq k$.

Let \mathcal{C} be a category, (I, \leq) a directed set, and $(\{M_i\}_{i \in I}, \{\varphi_{ij} : M_i \longrightarrow M_j\}_{i \leq j \in I})$ a direct system in \mathcal{C} . The *direct limit* of such a direct system, if it exists, is an object $\lim M_i$ of \mathcal{C}

together with morphisms $\mu_i: M_i \longrightarrow \varinjlim_{i \in I} M_i$ satisfying the following universal property:

- (D1) $\mu_i = \mu_j \circ \varphi_{ij}$ whenever $i \leq j$;
- (D2) Let N be an object of C together with morphisms $\nu_i : M_i \longrightarrow N$ for all $i \in I$ such that $\nu_i = \nu_j \circ \varphi_{ij}$ for all $i \leq j \in I$. Then there exists a unique morphism $\psi : \varinjlim_{i \in I} M_i \longrightarrow N$ such that $\nu_i = \psi \circ \mu_i$ for all $i \in I$.

Merry Christmas & Happy New Year !