Test Exam BMS Basic Course

Commutative Algebra

Prof. Dr. J. Kramer

Test Exam (60 points)

Problem 1 (10 points)

- (a) Let $A \subseteq B$ be integral domains and let B be integral over A. Show that A is a field if and only if B is a field.
- (b) Let A be a noetherian local ring with maximal ideal \mathfrak{m} . Show that $\mathfrak{m}/\mathfrak{m}^2 = 0$ if and only if A is a field.

Problem 2 (10 points)

- (a) Show that $\operatorname{Ext}^1_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z},\mathbb{Z}) \cong \mathbb{Z}/n\mathbb{Z}$. Furthermore, for any \mathbb{Z} -module M, show that $\operatorname{Ext}^1_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z},M) \cong M/nM$.
- (b) For any finitely generated \mathbb{Z} -module M, show that

$$\operatorname{Tor}_n^{\mathbb{Z}}(M, N) = 0 \ (n \in \mathbb{N}, n > 1).$$

Problem 3 (10 points)

Let A be a commutative ring with 1 and let M, N be A-modules.

- (a) Formulate the universal property of the tensor product $M \otimes_A N$. Show that this determines $M \otimes_A N$ unique up to A-module isomorphism.
- (b) If $m, n \in \mathbb{N}_{>0}$ are coprime, then show that

$$\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z} = 0.$$

Problem 4 (10 points)

(a) Let k be a field and A the subring of k[X,Y], given by

$$A:=\big\{a+Xf|\,a\in k,\,f\in k[X,Y]\big\}.$$

Show that A is not a noetherian ring by finding an ideal which is not finitely generated.

(b) Let k be an algebraically closed field and let $\mathfrak{a} \subsetneq k[X_1, \ldots, X_n]$ be a proper ideal. Prove that

$$V(\mathfrak{a}) \neq \emptyset$$
.

where
$$V(\mathfrak{a}) := \{(a_1, \dots, a_n) \in k^n \mid f(a_1, \dots, a_n) = 0, f \in \mathfrak{a}\}.$$

Problem 5 (10 points)

- (a) Let $A = k[X, Y, Z]/(XY Z^2)$ and $\mathfrak{p} = (\bar{X}, \bar{Z})$, where \bar{X}, \bar{Z} denote the classes of X, Z in A, respectively. Show that \mathfrak{p}^2 is not a primary ideal of A.
- (b) Compute a minimal primary decomposition of the ideal

$$\mathfrak{a} := (XY, YZ, XZ) \subseteq \mathbb{C}[X, Y, Z].$$

Determine the associated prime ideals and determine the isolated as well as the embedded prime ideals for this primary decomposition.

Problem 6 (10 points)

- (a) Show that the ring $\mathbb{Z}[\sqrt{-3}]$ is not integrally closed in its field of fractions.
- (b) Show that ring $\mathbb{C}[X,Y]/(Y^2-X^3-X^2)$ is not integrally closed in its field of fractions.