Humboldt-Universität zu Berlin Institut für Mathematik Mathematik und ihre Didaktik Dr. A. Filler, Dr. M. Dennert

Übungsaufgaben zur Vorlesung / Übung

Elementargeometrie

Sommersemster 2003

Serie 1 (Abgabe: 05. – 07. 05. 2003)

Aufgabe 1

Weisen Sie nach, dass durch $\mathcal{P} = \{A,B,C,D\}$ (beliebige vierelementige Menge) und $\mathcal{G} = \{\{A,B,C\}, \{A,B,D\}, \{A,C,D\}, \{B,C,D\}\}$ (alle dreielementigen Teilmengen von \mathcal{P}) kein Modell der Axiomengruppe I gegeben ist. Welche Axiome der Gruppe I sind nicht erfüllt?

Aufgabe 2

Es sei $\mathcal{P} = \{A, B, C\}$ eine beliebige dreielementige Menge. Die Elemente von \mathcal{P} seien Punkte, alle zweielementigen Teilmengen von \mathcal{P} Geraden: $\mathcal{G} = \{\{A, B\}, \{A, C\}, \{B, C\}\}\}$.

- a) Begründen Sie, dass in dem so konstruierten Modell alle Axiome der Gruppe I gelten.
- b) Begründen Sie, dass es keine Modelle der Axiomengruppe I geben kann, die weniger Punkte oder Geraden enthalten als dieses Modell.

Aufgabe 3

Beweisen Sie folgenden Satz auf Grundlage der Inzidenzaxiome für den Raum:

Eine beliebige Ebene ε und eine beliebige Gerade g mit $g \not\subset \varepsilon$ haben höchstens einen Punkt gemeinsam.

Die Aufgaben 1 und 2 beziehen sich auf die ebenen Inzidenzaxiome (I/1 - I/4); Aufgabe 3 hingegen auf die räumlichen Inzidenzaxiome (I/1 - I/8).

Aufgabe 4

Zeigen Sie, dass sich jedes stumpf- oder rechtwinklige Dreieck in spitzwinklige Dreiecke zerlegen lässt.

Aufgabe 5

Sei ABCD ein Sehnenviereck, $AB \cap CD = \{P\}$ und $AC \cap BD = \{Q\}$. Begründen Sie die folgenden Aussagen:

a)
$$|PA| |PB| = |PC| |PD|$$

b)
$$|QA| |QC| = |QB| |QD|$$

Aufgabe 6

Zeigen Sie, dass es in jeder dreiseitigen Pyramide *ABCD* eine Ecke gibt, so dass man aus den drei Kanten, die von dieser Ecke ausgehen, ein Dreieck bilden kann.

(41. Mathematikolympiade, Kl. 10, 3. Stufe)

Viel Erfolg beim Anfertigen der Aufgaben.

 $^{^1}$ Mit $\mathcal P$ wird jeweils die Menge aller existierenden Punkte und mit $\mathcal G$ die Menge aller existierenden Geraden bezeichnet.