
Aufgaben zum Zirkel am 5.3.2015

1. Wiegeprobleme

Welches ganzzahlige Gewicht haben jeweils \blacktriangle , \blacksquare und \bullet ?

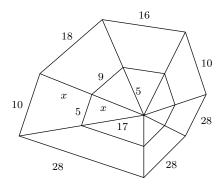
2. Lineares Optimieren

5 a) Finde das Minimum der Zielfunktion $Z(x, y) = 2x + 3y$ für die angegebenen Nebenbedingungen.	$x \ge 0$ $y \ge 0$
b) Existiert ein Maximum der Zielfunktion?	$5x + y \ge 20$
Begründe.	$x + y \ge 12$ $x + 2y \ge 16$
6 Etwas zum Nachdenken	x ≥ 0
Sebastian bearbeitet eine Aufgabe zum linearen Optimieren. Er	y ≥ 0
stellt fest: "Das mit dem Eckenkriterium klappt nicht so richtig.	$3y - 2x \ge 21$
Ich erhalte zwei Lösungen."	$y - 2x \le 11$
a) Überprüfe, ob Sebastian Recht hat. Zeichne das Planungs-	x ≤ 4
vieleck und bestimme den Wert der Zielfunktionen für die Eck- punkte.	Z(x, y) = y - 2x

- b) Katrin sagt: "Falsch ist das Eckenkriterium nicht. Die Zielfunktion nimmt in einer oder mehreren Ecken das Maximum oder Minimum an." Was meint ihr?
- c) Wann kommt es bei einer Aufgabe zu dieser besonderen Situation? Hast du eine Idee?

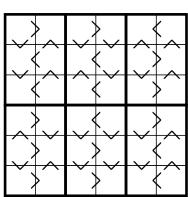
3. Lückenfüller

Die vier Ziffern 4, 5, 6, 7 werden zufällig auf die vier Lücken in der Zahl


verteilt. Das Ergebnis ist eine zehnstellige Zahl - zum Beispiel 7435664748 (die eingesetzten Ziffern sind fett).

Wie groß ist die Wahrscheinlichkeit, dass die Zahl, die man durch zufälliges Einsetzen der vier Ziffern erhält, durch 36 teilbar ist?

4. Ins Netz gegangen


Eine mathematisch besonders begabte Spinne webt ein Netz mit Netzstücken ganzzahliger Länge (siehe Bild rechts).

Auch die Länge x ist eine ganze Zahl. Wie lang ist x?

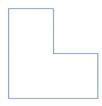
5. Vergleichssudoku

In die Felder der Quadrate sind die Zahlen 1, 2, 3, 4, 5, 6 so einzutragen, dass in jeder Spalte, in jeder Zeile und in jedem dick umrandeten Gebiet jede Zahl genau einmal vorkommt. Die ">"-Zeichen zwischen den Feldern geben an, welche der beiden Zahlen größer bzw. welche kleiner als die andere ist. Die Pfeilspitze zeigt stets auf die kleinere Zahl.

Zum Nachdenken für daheim:

1. Ungleichung I

Beweise die folgende Aussage: Wenn x und y positive rationale Zahlen sind, für die x + y = 4 gilt, dann ist mit Sicherheit $x \cdot y \leq 4$.


Für wie viele solche geordnete Paare (x,y) gilt $x \cdot y = 4$?

2. Ungleichung II

Beweise, dass für jede positive rationale Zahl a stets gilt: $\frac{a^2}{1+a^4} \le \frac{1}{2}$. Wann gilt Gleichheit?

3. Vier Viertel

Kann man das recht abgebildete "L"in vier kongruente Teilstücke aufteilen?

