Übungsaufgaben zur Vorlesung

Algebra und Funktionentheorie

Prof. Dr. Jürg Kramer

Keine Abgabe

Besprechung in den Übungen der letzten Vorlesungswoche

Probeklausur (60 Punkte)

Aufgabe 1 (10 Punkte)

Es sei (G, \circ) eine Gruppe.

- (a) Wie ist die Ordnung von G definiert? Wie ist die Ordnung ordG(g) eines Elements $g \in G$ definiert? Welcher Zusammenhang besteht zwischen den beiden Größen?
- (b) Es sei $H \subseteq G$ eine nicht-leere endliche Teilmenge, die bezüglich der Verknüpfung "o" abgeschlossen ist. Zeigen Sie, dass jedes Element $g \in H$ endliche Ordnung hat.
- (c) Zeigen Sie, dass die Teilmenge H eine Untergruppe von G ist.

Aufgabe 2 (10 Punkte)

- (a) Wann heißt eine Gruppe auflösbar?
- (b) Seien p, q Primzahlen mit p > q und G eine Gruppe der Ordnung $p \cdot q$. Zeigen Sie, dass G eine p-Sylowuntergruppe besitzt, die Normalteiler von G ist.
- (c) Ist die Gruppe G aus Teil (b) auflösbar? Begründen Sie Ihre Antwort.

Aufgabe 3 (10 Punkte)

Es seien p eine Primzahl und $\zeta_p := \exp(2\pi i/p) \in \mathbb{C}$ eine primitive p-te Einheitswurzel.

(a) Zeigen Sie, dass das Minimalpolynom von ζ_p über \mathbb{Q} gegeben ist durch

$$f(X) = \frac{X^p - 1}{X - 1} = X^{p-1} + X^{p-2} + \dots + X + 1.$$

 ${\it Hinweis:}$ Um hierbei bekannte Irreduzibilitätskriterien anwenden zu können, empfiehlt es sich, Xdurch X+1 zu ersetzen.

- (b) Es sei E der Zerfällungsköper von X^p-2 über \mathbb{Q} . Zeigen Sie, dass der Grad $[E:\mathbb{Q}]$ der Körpererweiterung E/\mathbb{Q} gleich p(p-1) ist.
- (c) Zeigen Sie, dass das Polynom $X^p 2$ über dem Körper $\mathbb{Q}(\zeta_p)$ irreduzibel ist.

Aufgabe 4 (10 Punkte)

- (a) Berechnen Sie den Grad des Zerfällungskörpers E des Polynoms $g(X) = X^4 2X^2 3$ über \mathbb{Q} .
- (b) Bestimmen Sie die Galois-Gruppe der Erweiterung E/\mathbb{Q} .
- (c) Bestimmen Sie alle echten Zwischenkörper $\mathbb{Q} \subsetneq L \subsetneq E$. Welche davon sind Galoissch über \mathbb{Q} ?

Aufgabe 5 (10 Punkte)

- (a) Es seien $D \subseteq \mathbb{C}$ ein Gebiet und $f: D \longrightarrow \mathbb{C}$ eine komplexwertige Funktion der Form f(z) = u(x, y) + iv(x, y). Unter welchen allgemeinen Bedingungen an die reellwertigen Funktionen u = u(x, y) und v = v(x, y) ist f holomorph in D?
- (b) Es seien n eine positive natürliche Zahl und a eine positive reelle Zahl. Zeigen Sie, dass jede holomorphe Funktion $f: \mathbb{C} \longrightarrow \mathbb{C}$, welche für alle $z \in \mathbb{C}$ die Ungleichung

$$|f(z)| \le a|z|^n$$

erfüllt, ein Polynom ist.

Hinweis: Verwenden Sie die allgemeinen Cauchyschen Integralformeln.

Aufgabe 6 (10 Punkte)

- (a) Formulieren Sie eine Variante des Cauchyschen Integralsatzes.
- (b) Es sei $\gamma: [0,1] \longrightarrow \mathbb{C} \setminus \{\pm i\}$ ein einfach geschlossener und positiv orientierter Weg. Bestimmen Sie in Abhängigkeit von γ alle Werte, die das Integral

$$I(\gamma) := \int_{\gamma} \frac{1}{z^2 + 1} \, \mathrm{d}z$$

annehmen kann.

 $\mathit{Hinweis:}$ Bestimmen Sie dazu alle möglichen Homotopieklassen der zur Diskussion stehenden Wege $\gamma.$