Übungsaufgaben zur Vorlesung

Algebra und Funktionentheorie

Prof. Dr. Jürg Kramer

Abgabetermin: 23.01.2023 bis 09:00 Uhr auf Moodle

Bitte beachten:

Jede Aufgabe in separatem PDF abgeben.
Erste Seite in jedem PDF mit Namen und Matrikelnummern versehen.
Partnerabgabe ist erlaubt und wird empfohlen.

Serie 12 (30 Punkte)

Aufgabe 1 (10 Punkte)

Es seien K ein Körper der Charakteristik 0 und X_1, \ldots, X_n Variablen sowie s_1, \ldots, s_n die entsprechenden n elementarsymmetrischen Funktionen.

- (a) Beweisen Sie, dass der Körper $E := K(X_1, \ldots, X_n)$ eine Galois-Erweiterung des Körpers $L := K(s_1, \ldots, s_n)$ ist, deren Galois-Gruppe isomorph zur symmetrischen Gruppe S_n ist.
- (b) Wir betrachten weiter das Polynom

$$f(T) = T^n - s_1 T^{n-1} \pm \ldots + (-1)^n s_n = (T - X_1) \cdot \ldots \cdot (T - X_n) \in L[T]$$

mit Diskriminante
$$\Delta := \prod_{j < k} (X_j - X_k)^2$$
.

Welcher Untergruppe von S_n entspricht die Körpererweiterung $L(\sqrt{\Delta})/L$ nach dem Hauptsatz der Galois-Theorie?

Aufgabe 2 (10 Punkte)

Entscheiden Sie, in welchen Punkten $z_0 \in \mathbb{C}$ die folgenden Funktionen komplex differenzierbar sind und geben Sie gegebenenfalls die komplexe Ableitung an. Verwenden Sie dazu ausschließlich die Definition der komplexen Differenzierbarkeit.

- (a) $f: \mathbb{C} \longrightarrow \mathbb{C}$ gegeben durch $f(z) = z^2$.
- (b) $f: \mathbb{C} \longrightarrow \mathbb{C}$ gegeben durch $f(z) = |z|^2$.
- (c) $f: \mathbb{C} \longrightarrow \mathbb{C}$ gegeben durch f(z) = Re(z) + i|Im(z)|.
- (d) $f: \mathbb{C} \longrightarrow \mathbb{C}$ gegeben durch $f(z) = \exp(z)$.

Aufgabe 3 (10 Punkte)

Es seien $D\subseteq \mathbb{C}$ ein Gebiet und $f,g\colon D\longrightarrow \mathbb{C}$ holomorphe Funktionen. Zeigen Sie:

- (a) Das Produkt $f \cdot g$ ist holomorph in D und besitzt dort die komplexe Ableitung $f' \cdot g + f \cdot g'$.
- (b) Der Quotient 1/f ist holomorph in $D'\coloneqq\{z\in D\,|\,f(z)\neq 0\}$ und besitzt dort die komplexe Ableitung $-f'/f^2$.