Übungsaufgaben zur Vorlesung

Algebra / Zahlentheorie

Prof. Dr. J. Kramer

Abgabetermin: 06.05.2024 bis 09:00 Uhr auf Moodle

Bitte beachten:

Jede Aufgabe in separatem PDF abgeben. Erste Seite in jedem PDF mit Namen und Matrikelnummern versehen. Partnerabgabe ist erlaubt und wird empfohlen.

Serie 3 (30 Punkte)

Aufgabe 1 (10 Punkte)

- (a) Finden Sie händisch die Primfaktorzerlegungen der Zahlen 3 570, 135 135, 273^{273} und $2^{32} 1$.
- (b) Bestimmen Sie händisch die folgenden größten gemeinsamen Teiler (777⁷⁷⁷, 273²⁷³), $(2^{16}-1,3^{12}-2^{12})$, $(10^6-1,10^9+1)$ und $(3\,600,3\,240,1\,125)$ durch Angabe ihrer Primfaktorzerlegung.
- (c) Bestimmen Sie händisch die folg. kleinsten gemeinsamen Vielfachen [777⁷⁷⁷, 273²⁷³], [$2^{16}-1,3^{12}-2^{12}$], [$10^6-1,10^9+1$] und [$3\,600,3\,240,1\,125$] durch Angabe ihrer Primfaktorzerlegung.
- (d) Finden Sie drei natürliche Zahlen a_1, a_2, a_3 , die teilerfremd, aber nicht paarweise teilerfremd sind.

Aufgabe 2 (10 Punkte)

- (a) Führen Sie für die folgenden Paare natürlicher Zahlen geschickt Division mit Rest durch: 22 222 und 101, $3^{16} 2^{16}$ und $4^4 + 9^4$, sowie $2^3 \cdot 3^3 \cdot 5^3$ und $2^4 \cdot 3^3 \cdot 5^2$.
- (b) Verwenden Sie Division mit Rest, um die Zahlen 120 bzw. 998 im Siebenersystem darzustellen, sie also in der Form

$$g_{\ell} \cdot 7^{\ell} + \ldots + g_2 \cdot 7^2 + g_1 \cdot 7 + g_0 \quad (0 \le g_i \le 6, \ g_{\ell} \ne 0; \ j = 0, \ldots, \ell)$$

zu schreiben.

(c) Berechnen Sie das Produkt 120 · 998 im Siebenersystem unter Verwendung der Ergebnisse aus Aufgabenteil (b).

Aufgabe 3 (10 Punkte)

Es sei $n=g_\ell\cdot 10^\ell+\ldots+g_2\cdot 10^2+g_1\cdot 10+g_0\ (0\leq g_j\leq 9,\,g_\ell\neq 0;\,j=0,\ldots,\ell)$ die Dezimaldarstellung einer natürlichen Zahl n. Dann heißt die Größe

$$Q(n) = g_0 + g_1 + g_2 + \ldots + g_{\ell}$$

 $Quersumme\ von\ n,$

$$Q_a(n) = g_0 - g_1 + g_2 \mp \ldots + (-1)^{\ell} g_{\ell}$$

alternierende Quersumme von n und

$$Q_{3a}(n) = (g_0 + g_1 \cdot 10 + g_2 \cdot 10^2) - (g_3 + g_4 \cdot 10 + g_5 \cdot 10^2) \pm \dots$$

alternierende 3-Block-Quersumme von n. Zeigen Sie:

- (a) n ist genau dann durch 3 bzw. 9 teilbar, wenn Q(n) durch 3 bzw. 9 teilbar ist.
- (b) n ist genau dann durch 8 teilbar, wenn $g_2 \cdot 4 + g_1 \cdot 2 + g_0$ durch 8 teilbar ist.
- (c) n ist genau dann durch 11 teilbar, wenn $Q_a(n)$ durch 11 teilbar ist.
- (d) n ist genau dann durch 7 teilbar, wenn $Q_{3a}(n)$ durch 7 teilbar ist.