Übungsaufgaben zur Vorlesung

Algebra / Zahlentheorie

Prof. Dr. J. Kramer

Abgabetermin: 05.06.2023 bis 09:00 Uhr auf Moodle

Bitte beachten:

Jede Aufgabe in separatem PDF abgeben. Erste Seite in jedem PDF mit Namen und Matrikelnummern versehen. Partnerabgabe ist erlaubt und wird empfohlen.

Serie 6 (30 Punkte)

Aufgabe 1 (10 Punkte)

(a) Finden Sie alle Gruppenhomomorphismen

$$f: (\mathcal{R}_6, \oplus) \longrightarrow (\mathcal{R}_6, \oplus).$$

Bestimmen Sie jeweils Kern und Bild dieser Gruppenhomomorphismen.

- (b) Zeigen Sie, dass die Gruppen (\mathcal{R}_6, \oplus) und $(\mathcal{R}_7 \setminus \{0\}, \odot)$ zueinander isomorph sind.
- (c) Es seien $p \neq q$ zwei Primzahlen. Beweisen Sie: Ist $f: (\mathcal{R}_p, \oplus) \longrightarrow (\mathcal{R}_q, \oplus)$ ein Gruppenhomomorphismus, so muss für alle $n \in \mathcal{R}_p$ die Gleichheit f(n) = 0 gelten.

Aufgabe 2 (10 Punkte)

- (a) Zeigen Sie: Ist $f: G \longrightarrow H$ ein Gruppenhomomorphismus und $N \subseteq H$ ein Normalteiler in H, so ist das Urbild $f^{-1}(N)$ von N unter f ein Normalteiler in G.
- (b) Betrachten Sie die Untergruppe $U := \{d^0, d^2, s_2, s_4\} \leq D_8$, die die Identität, die Drehung um den Winkel π und die Spiegelungen s_2, s_4 an den beiden Seitenhalbierenden des Quadrats enthält. Stellen Sie die Gruppentafel von U auf. Verwenden Sie Aufgabenteil (a), um zu zeigen, dass U ein Normalteiler in D_8 ist, indem Sie einen injektiven Gruppenhomomorphismus $f: D_8 \longrightarrow S_4$ angeben.
- (c) Zeigen Sie: Ist $f: G \longrightarrow H$ ein surjektiver Gruppenhomomorphismus und $N \subseteq G$ ein Normalteiler in G, so ist das Bild f(N) von N unter f ein Normalteiler in H. Finden Sie ein Gegenbeispiel für diese Aussage, falls f nicht surjektiv ist.

Aufgabe 3 (10 Punkte)

- (a) Gegeben sei die Untergruppe $N := \{0,4\} \leq (\mathcal{R}_8, \oplus)$. Zeigen Sie, dass N ein Normalteiler in (\mathcal{R}_8, \oplus) ist und verifizieren Sie die Isomorphie $(\mathcal{R}_8/N, \oplus) \cong (\mathcal{R}_4, \oplus)$.
- (b) Zeigen Sie allgemein: Es seien m, n, r natürliche Zahlen mit $r = m \cdot n$. Dann gibt es einen Normalteiler $N \leq (\mathcal{R}_r, \oplus)$ mit $N \cong (\mathcal{R}_n, \oplus)$, und es besteht die Isomorphie $(\mathcal{R}_r/N, \oplus) \cong (\mathcal{R}_m, \oplus)$.