Übungsaufgaben zur Vorlesung

Algebra und Funktionentheorie

Prof. Dr. Jürg Kramer

Abgabetermin: 05.12.2022 bis 09:00 Uhr auf Moodle

Bitte beachten:

Jede Aufgabe in separatem PDF abgeben. Erste Seite in jedem PDF mit Namen und Matrikelnummern versehen. Partnerabgabe ist erlaubt und wird empfohlen.

Serie 7 (30+10 Punkte)

Aufgabe 1 (10 Punkte)

Es sei $\{e\} \longrightarrow G' \longrightarrow G \longrightarrow G'' \longrightarrow \{e\}$ eine kurze exakte Sequenz von Gruppen. Beweisen Sie: Die Gruppe G ist genau dann auflösbar, wenn sowohl G' als auch G'' auflösbar sind. *Hinweis*: Verwenden Sie die Isomorphiesätze.

Aufgabe 2 (10 Punkte)

Es sei G eine Gruppe mit neutralem Element e. Wir bezeichnen mit

$$[G,G]\coloneqq \left\langle ghg^{-1}h^{-1} \,\middle|\, g,h\in G\right\rangle$$

den Kommutator von G. Weiter seien die j-ten iterierten Kommutatoren $D^j(G)$ von G für $j \in \mathbb{N}$ induktiv durch $D^0(G) := G$ und $D^{j+1}(G) := [D^j(G), D^j(G)]$ definiert. Beweisen Sie:

- (a) Der Kommutator [G, G] ist ein Normalteiler in G und die Faktorgruppe G/[G, G] ist abelsch.
- (b) Die Gruppe G ist genau dann auflösbar, wenn eine natürliche Zahl $n \in \mathbb{N}$ existiert, für die $D^n(G) = \{e\}$ gilt.

Aufgabe 3 (10 Punkte)

Es sei R ein kommutativer Ring mit Einselement. Zeigen Sie:

- (a) Die Summe $\mathfrak{a} + \mathfrak{b}$ und der Durchschnitt $\mathfrak{a} \cap \mathfrak{b}$ zweier Ideale $\mathfrak{a}, \mathfrak{b} \subseteq R$ sind ebenfalls Ideale in R.
- (b) Ein Ideal $\mathfrak{p} \subseteq R$ ist genau dann ein Primideal, wenn R/\mathfrak{p} ein Integritätsbereich ist.
- (c) Ein Ideal $\mathfrak{m} \subseteq R$ ist genau dann ein maximales Ideal, wenn R/\mathfrak{m} ein Körper ist.

Aufgabe 4* (10 Punkte)

(a) Die Menge

$$\mathbb{Q}(\sqrt{-3}) := \left\{ a + b\sqrt{-3} \mid a, b \in \mathbb{Q} \right\}$$

mit den natürlichen Operationen

$$(a+b\sqrt{-3}) + (c+d\sqrt{-3}) := (a+c) + (b+d)\sqrt{-3}$$

 $(a+b\sqrt{-3}) \cdot (c+d\sqrt{-3}) := (ac-3bd) + (ad+bc)\sqrt{-3}$

ist ein Ring. Zeigen Sie, dass $\mathbb{Q}(\sqrt{-3})$ sogar ein Körper ist.

(b) Bestimmen Sie alle Einheiten des Unterrings

$$\mathbb{Z}[\sqrt{-3}] := \left\{ \alpha = \frac{a + b\sqrt{-3}}{2} \,\middle|\, a, b \in \mathbb{Z}, \, a \equiv b \bmod 2 \right\} \subset \mathbb{Q}(\sqrt{-3}).$$

Hinweis: Definieren Sie die Norm $N(\alpha)$ eines Elements $\alpha \in \mathbb{Z}[\sqrt{-3}]$ durch

$$N(\alpha) := \frac{a^2 + 3b^2}{4} \,.$$

Beweisen und verwenden Sie die Eigenschaften $N(\alpha) \in \mathbb{Z}$ und $N(\alpha \cdot \beta) = N(\alpha) \cdot N(\beta)$ für alle $\alpha, \beta \in \mathbb{Z}[\sqrt{-3}]$.