Übungsaufgaben zur Vorlesung

Algebra / Zahlentheorie

Prof. Dr. J. Kramer

Abgabetermin: 03.07.2023 bis 09:00 Uhr auf Moodle

Bitte beachten:

Jede Aufgabe in separatem PDF abgeben.

Erste Seite in jedem PDF mit Namen und Matrikelnummern versehen. Partnerabgabe ist erlaubt und wird empfohlen.

Serie 10 (30 Punkte)

Aufgabe 1 (10 Punkte)

Es sei $(\mathbb{Q}[X], +, \cdot)$ der Polynomring in der Variablen X mit Koeffizienten aus dem Körper der rationalen Zahlen \mathbb{Q} . Für ein Polynom $p(X) = \sum_{j \in \mathbb{N}} a_j \cdot X^j$ in $\mathbb{Q}[X]$ definieren wir den Grad von p(X) durch

$$\operatorname{grad}(p) := \max\{j \in \mathbb{N} \mid a_j \neq 0\},\$$

sofern $p \neq 0$ gilt.

(a) Beweisen Sie: Sind a(X), b(X) zwei Polynome in $\mathbb{Q}[X]$ mit $b \neq 0$, dann existieren Polynome q(X), r(X) in $\mathbb{Q}[X]$ mit $0 \leq \operatorname{grad}(r) < \operatorname{grad}(b)$ oder r = 0, so dass

$$a(X) = q(X) \cdot b(X) + r(X)$$

gilt. Folgern Sie daraus, dass $(\mathbb{Q}[X], +, \cdot)$ ein Euklidischer Ring ist.

(b) Berechnen Sie den größten gemeinsamen Teiler g(X) von $a(X) = X^4 + 2X^3 + 2X^2 + 2X + 1$ und $b(X) = X^3 + X^2 - X - 1$ und bestimmen Sie Polynome c(X), d(X) in $\mathbb{Q}[X]$ mit der Eigenschaft

$$c(X) \cdot a(X) + d(X) \cdot b(X) = g(X).$$

Aufgabe 2 (10 Punkte)

- (a) Es sei $(K, +, \cdot)$ ein Körper und \mathfrak{a} ein Ideal in K. Zeigen Sie, dass dann entweder $\mathfrak{a} = (0)$ oder $\mathfrak{a} = (1)$ gelten muss.
- (b) Es sei $p \in \mathbb{N}$ eine Primzahl. Gibt es einen Ringhomomorphismus $f: (\mathbb{Q}, +, \cdot) \longrightarrow (\mathbb{Z}/p\mathbb{Z}, +, \cdot)$, der nicht der Nullhomomorphismus ist? Begründen Sie.
- (c) Zeigen Sie, dass ein Ringhomomorphismus $f:(\mathbb{Q},+,\cdot)\longrightarrow(\mathbb{Q},+,\cdot)$ entweder der Nullhomomorphismus oder die Identität ist.

Aufgabe 3 (10 Punkte)

- (a) Bestimmen Sie die Dezimalbruchentwicklung der Zahlen $\frac{1}{7}$, $\frac{2}{7}$ und $\frac{3}{28}$.
- (b) Zeigen Sie: Aus einer reinperiodischen Dezimalbruchentwicklung $0, \overline{q_{-1}\dots q_{-p}}$ gewinnen wir die dadurch bestimmte rationale Zahl $\frac{a}{b}$ mit Hilfe der Formeln

$$a = \sum_{j=1}^{p} q_{-j} 10^{p-j}$$
 und $b = 10^{p} - 1$.

(c) Bestimmen Sie eine rationale Zahl $\frac{a}{b}$ in gekürzter Form, d. h. a,b sind teilerfremd, die die Dezimalbruchentwicklung 0, 3 $\overline{4\,5}$ besitzt.