HU Berlin

Exercises for BMS Basic Course Commutative Algebra

Prof. Dr. Jürg Kramer

Sheet 12 (Week: 15.01. - 19.01.2024)

Exercise 1

Let $\mathfrak{a} = (X^2Y, XY^2)$ be an ideal in the polynomial ring k[X, Y] over the field k.

- (a) Compute the ideal quotients $(\mathfrak{a} : XY)$, $(\mathfrak{a} : (X^2, XY))$, and $(\mathfrak{a} : (XY, Y^2))$.
- (b) Find a minimal primary decomposition of the ideal $\mathfrak{a}.$
- (c) Determine the isolated and the embedded prime ideals associated to \mathfrak{a} , and find the uniquely determined primary components.

Exercise 2

Let $A = C([0, 1], \mathbb{R})$ denote the ring of continuous, real-valued functions on the interval [0, 1]. Show that the zero ideal in A is not decomposable.

Hint: Recall from Sheet 3, Exercise 1, that every maximal ideal in A is of the form $\mathfrak{m}_x = \{f \in A \mid f(x) = 0\}$ for some $x \in [0, 1]$. Assuming now that there is a primary decomposition $(0) = \mathfrak{q}_1 \cap \ldots \cap \mathfrak{q}_n$, construct a non-zero element $f \in \mathfrak{q}_1 \cap \ldots \cap \mathfrak{q}_n$ using this exercise.

Exercise 3

Let k be an algebraically closed field. For a subset $S \subseteq k[X_1, \ldots, X_n]$, recall that

$$V(S) \coloneqq \left\{ (x_1, \dots, x_n) \in k^n \, \middle| \, f(x_1, \dots, x_n) = 0, \, \forall f \in S \right\}$$

is called an *affine algebraic set* in k^n .

- (a) Show that by defining the affine algebraic sets of k^n to be closed, one obtains a topology on k^n . This topology is called the *Zariski topology* on k^n .
- (b) Show that there is a bijection between the affine algebraic sets of k^n and the ideals of $k[X_1, \ldots, X_n]$, which coincide with their radicals, the so-called *radical ideals*.
- (c) Show that there is a bijection between the irreducible affine algebraic sets of k^n , the so-called *affine algebraic varieties*, and the prime ideals of $k[X_1, \ldots, X_n]$.
- (d) Let $\mathfrak{a} = (X^2Y, XY^2) \subseteq k[X, Y]$. Use Exercise 1 to find a decomposition of the affine algebraic set $V(\mathfrak{a})$ into irreducible affine algebraic sets of k^2 .

Exercise 4

Let X be a topological space. A presheaf \mathcal{F} of abelian groups (resp. rings) on X consists of the data:

- (1) for every open subset $U \subseteq X$, an abelian group (resp. a ring) $\mathcal{F}(U)$,
- (2) for every inclusion $V \subseteq U$ of open subsets of X, a homomorphism of abelian groups (resp. rings) $\rho_{UV}: \mathcal{F}(U) \longrightarrow \mathcal{F}(V)$,

subject to the conditions:

- (i) $\mathcal{F}(\emptyset) = \{0\},\$
- (ii) if U is an open subset of X, then $\rho_{UU} = \mathrm{id}_{\mathcal{F}(U)}$,
- (iii) if $W \subseteq V \subseteq U$ are three open subsets of X, then $\varrho_{UW} = \varrho_{VW} \circ \varrho_{UV}$.

Prove the following assertions:

(a) Consider the topological space $X = \mathbb{R}^n$ equipped with the euclidean topology. Show that the assignment

 $\mathcal{C}(U) \coloneqq \{f \colon U \longrightarrow \mathbb{R} \mid f \text{ is smooth on } U\}$

for every open subset $U \subseteq X$ gives rise to a presheaf \mathcal{C} of rings on \mathbb{R}^n .

(b) Let $x \in X$ be a fixed point in a topological space X and let G be an abelian group. Show that the assignment

$$\mathcal{G}(U) \coloneqq \begin{cases} \{0\}, & \text{if } x \notin U, \\ G, & \text{if } x \in U, \end{cases}$$

for every open subset $U \subseteq X$ gives rise to a presheaf \mathcal{G} of abelian groups on X. The presheaf \mathcal{G} is called the *skyscraper presheaf at x with stalk G*.