HU Berlin

Exercises for BMS Basic Course Commutative Algebra

Prof. Dr. Jürg Kramer

Sheet 14 (Week: 29.01. - 02.02.2024)

Exercise 1

- (a) Let A be a noetherian integral domain of dimension 1. Show that any two different, non-zero prime ideals $\mathfrak{p}_1, \mathfrak{p}_2 \subsetneq A$ are coprime, i.e., $\mathfrak{p}_1 + \mathfrak{p}_2 = (1)$.
- (b) Let (A, \mathfrak{m}) be a local integral domain which is not a field. Suppose that \mathfrak{m} is principal and satisfies $\bigcap_{n=1}^{\infty} \mathfrak{m}^n = (0)$. Prove that A is a discrete valuation ring. *Hint:* Let $\mathfrak{m} = (x)$. Show that every non-zero element $a \in A$ can be uniquely written as $a = ux^k$, where u is a unit in A and $k \in \mathbb{N}$. Use this to define a discrete valuation on the field of fractions of A having A as its valuation ring.

Exercise 2

Let $K = \mathbb{Q}(\sqrt{-5})$. Consider the ideals

$$\mathfrak{p}_1 = (2, 1 + \sqrt{-5}), \quad \mathfrak{p}_2 = (3, 1 + \sqrt{-5}), \quad \mathfrak{p}_3 = (3, 1 - \sqrt{-5}).$$

in the ring of integers $\mathfrak{O}_K = \mathbb{Z}[\sqrt{-5}]$. Prove the following five statements:

- (a) The ideals $\mathfrak{p}_1, \mathfrak{p}_2, \mathfrak{p}_3$ are prime.
- (b) (2) = \mathfrak{p}_1^2 .
- (c) (3) = $\mathfrak{p}_2\mathfrak{p}_3$.
- (d) $(1+\sqrt{-5}) = \mathfrak{p}_1\mathfrak{p}_2.$

(e)
$$(1 - \sqrt{-5}) = \mathfrak{p}_1 \mathfrak{p}_3.$$

Conclude that $(6) = \mathfrak{p}_1^2 \mathfrak{p}_2 \mathfrak{p}_3$ and observe that the two distinct factorizations of the number 6, namely

$$6 = 2 \cdot 3$$

= $(1 + \sqrt{-5})(1 - \sqrt{-5})$

into irreducible elements in \mathfrak{O}_K , arise from different groupings of the unique factorization of the principal ideal (6) into prime ideals.

Definitions for Exercise 3

- (1) A directed set is a partially ordered set (I, \leq) such that for any $i, j \in I$ there exists a $k \in I$ such that $i \leq k$ and $j \leq k$.
- (2) Let \mathcal{C} be a category and (I, \leq) a directed set. A direct system in \mathcal{C} indexed by I consists of a family $\{M_i\}_{i\in I}$ of objects of \mathcal{C} and a family of morphisms $\{\varphi_{ij} \colon M_i \longrightarrow M_j\}_{i\leq j\in I}$ satisfying
 - (S1) $\varphi_{ii} = \mathrm{id}_{M_i}$ for each $i \in I$, where $\mathrm{id}_{M_i} \colon M_i \longrightarrow M_i$ is the identity morphism;
 - (S2) $\varphi_{ik} = \varphi_{jk} \circ \varphi_{ij}$, whenever $i \leq j \leq k$.
- (3) Let \mathcal{C} be a category, (I, \leq) a directed set, and $(\{M_i\}_{i \in I}, \{\varphi_{ij} \colon M_i \longrightarrow M_j\}_{i \leq j \in I})$ a direct system in \mathcal{C} indexed by I. The *direct limit* of such a direct system, if it exists, is an object $\lim_{i \in I} M_i$ of \mathcal{C} together with morphisms $\mu_i \colon M_i \longrightarrow \lim_{i \in I} M_i$ satisfying the following universal property:
 - (L1) $\mu_i = \mu_j \circ \varphi_{ij}$, whenever $i \leq j$;
 - (L2) Let N be an object of \mathcal{C} together with morphisms $\nu_i \colon M_i \longrightarrow N$ for all $i \in I$ such that $\nu_i = \nu_j \circ \varphi_{ij}$, whenever $i \leq j$. Then, there exists a unique morphism $\psi \colon \lim_{i \in I} M_i \longrightarrow N$ such that $\nu_i = \psi \circ \mu_i$ for all $i \in I$.

Exercise 3

Let A be a commutative ring with 1 and let \mathfrak{M}_A denote the category of A-modules and A-module homomorphisms.

(a) Let (I, \leq) be a directed set, $\{M_i\}_{i\in I}$ a family of A-modules, and $\{\varphi_{ij} \colon M_i \longrightarrow M_j\}_{i\leq j\in I}$ a family of A-module homomorphisms constituting a direct system in \mathfrak{M}_A indexed by I. Construct a direct limit of this direct system by defining

$$\lim_{i \in I} M_i \coloneqq \prod_{i \in I} M_i / \sim ,$$

where we put

$$x_i \sim x_j \quad \iff \quad \exists k \in I : \varphi_{ik}(x_i) = \varphi_{jk}(x_j) \qquad (x_i \in M_i, x_j \in M_j).$$

- (b) Show that if $\mu_i(x_i) = 0$, then there exists $i \leq j$ such that $\varphi_{ij}(x_i) = 0$ in M_j .
- (c) Let $A = \mathbb{Z}$ and let I be the set of positive integers equipped with the partial order given by $m \leq n$ if and only if m divides n. Set $M_n = \mathbb{Z}/n\mathbb{Z}$ and for $m \leq n$ define $\varphi_{m,n} \colon \mathbb{Z}/m\mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z}$ to be multiplication by n/m. Prove that the direct limit $\lim M_n$ is isomorphic to \mathbb{Q}/\mathbb{Z} .

$$n \in I$$

Exercise 4

Let \mathcal{F} be a presheaf of rings on a topological space X and let $x \in X$. The stalk \mathcal{F}_x of \mathcal{F} at x is defined as

$$\mathcal{F}_x \coloneqq \varinjlim_{\substack{U \subseteq X, \text{ open} \\ x \in U}} \mathcal{F}(U),$$

where the direct limit is taken over all open neighborhoods U of x via the restriction maps of the presheaf \mathcal{F} .

Now, consider the presheaf \mathcal{F} of real-valued differentiable functions on the open unit disc $\{z \in \mathbb{C} \mid |z| < 1\}$ (in the classical topology). Show that the stalk of \mathcal{F} at the origin is a local ring.