HU Berlin

Exercises for BMS Basic Course Commutative Algebra

Prof. Dr. Jürg Kramer

Sheet 1 (Week: 16.10. - 20.10.2023)

Exercise 1

Let A be a commutative ring with 1. Prove the following assertions:

- (a) The ideal $\mathfrak{p} \subseteq A$ is a prime ideal if and only if A/\mathfrak{p} is an integral domain.
- (b) The ideal $\mathfrak{m} \subseteq A$ is a maximal ideal if and only if A/\mathfrak{m} is a field.
- (c) Let $A \neq \{0\}$. Then, there exists at least one maximal ideal $\mathfrak{m} \subsetneq A$.

Exercise 2

Let $f: A \longrightarrow B$ be a ring homomorphism. Prove the following assertions:

- (a) For every prime ideal $\mathfrak{q} \subsetneq B$, the ideal $f^{-1}(\mathfrak{q}) \subsetneq A$ is also prime. Is this statement also true for maximal ideals? Prove or disprove this claim.
- (b) If f is surjective, then the converse statement of part (a) is also true: For every prime ideal $\mathfrak{p} \subsetneq A$ with ker $(f) \subseteq \mathfrak{p}$, the ideal $f(\mathfrak{p}) \subsetneq B$ is also prime.

Exercise 3

Let A be a commutative ring with 1 and let $\mathfrak{a} \subseteq A$ be an ideal.

(a) Prove that the set

$$\mathfrak{N}_A \coloneqq \left\{ a \in A \, \big| \, \exists \, n \in \mathbb{N}_{>0} : \, a^n = 0 \right\}$$

of nilpotent elements of A is an ideal of A, the so-called *nilradical of* A.

(b) Prove that the set

$$\mathfrak{r}(\mathfrak{a}) \coloneqq \left\{ a \in A \, \big| \, \exists \, n \in \mathbb{N}_{>0} : a^n \in \mathfrak{a} \right\}$$

is an ideal of A, the so-called *radical of* \mathfrak{a} .

(c) Let $\pi: A \longrightarrow A/\mathfrak{a}$ denote the canonical projection. Show that

$$\mathfrak{r}(\mathfrak{a}) = \pi^{-1}(\mathfrak{N}_{A/\mathfrak{a}}).$$

Exercise 4

Let A be a commutative ring with 1. Let $\mathfrak{a} \subseteq A$ be an ideal and let $\mathfrak{r}(\mathfrak{a})$ denote its radical. Prove that the following properties hold:

(a)
$$\mathfrak{r}(\mathfrak{r}(\mathfrak{a})) = \mathfrak{r}(\mathfrak{a}).$$

(b) $\mathfrak{r}(\mathfrak{a} \cdot \mathfrak{b}) = \mathfrak{r}(\mathfrak{a} \cap \mathfrak{b}) = \mathfrak{r}(\mathfrak{a}) \cap \mathfrak{r}(\mathfrak{b}).$

(c)
$$\mathfrak{r}(\mathfrak{a}) = (1) \iff \mathfrak{a} = (1).$$

- (d) $\mathfrak{r}(\mathfrak{a} + \mathfrak{b}) = \mathfrak{r}(\mathfrak{r}(\mathfrak{a}) + \mathfrak{r}(\mathfrak{b})).$
- (e) For $n \in \mathbb{N}_{>0}$ and every prime ideal $\mathfrak{p} \subsetneq A$, we have $\mathfrak{r}(\mathfrak{p}^n) = \mathfrak{p}$.