Exercises for BMS Basic Course Commutative Algebra

Prof. Dr. Jürg Kramer

Sheet 10 (Week: 18.12. – 22.12.2023)

Exercise 1

- (a) Let A be a commutative ring with 1 and assume that the polynomial ring A[X] in one variable is noetherian. Show that the ring A is also noetherian.
- (b) Let A be a commutative noetherian ring with 1. Show that the polynomial ring $A[X_1, X_2, X_3, \ldots]$ in infinitely many variables is not noetherian.
- (c) Show that a field K, which is finitely generated as a \mathbb{Z} -algebra, necessarily has to be a finite field.

Exercise 2

- (a) Let A be a commutative ring with 1, $\mathfrak{a} \subseteq A$ an ideal, and $b \in A$. Consider the ideal $\mathfrak{b} := (\mathfrak{a}, 1-bX)$ in the polynomial ring A[X]. Show that $b \in \mathfrak{r}(\mathfrak{a})$ if and only if $1 \in \mathfrak{b}$.
- (b) Let k be an algebraically closed field. Give an alternative proof of the Strong Nullstellensatz, i.e., the implication

 $\mathfrak{a} \subseteq k[X_1, \ldots, X_n], \text{ ideal} \implies I(V(\mathfrak{a})) = \mathfrak{r}(\mathfrak{a}).$

Hint: Add a new variable X to the polynomial ring $k[X_1, \ldots, X_n]$ and use part (a); this is the so-called "trick" of Rabinowitch. In addition, use the Weak Nullstellensatz.

(c) Let k be an algebraically closed field and $\mathfrak{a} = (X_1^2 + X_2^2 - 1, X_2 - 1) \subseteq k[X_1, X_2]$ an ideal. Determine the affine algebraic set $V(\mathfrak{a})$ and its vanishing ideal $I(V(\mathfrak{a}))$. Do we have the equality $\mathfrak{a} = I(V(\mathfrak{a}))$? Prove or disprove this.

Exercise 3

- (a) Show that an ideal $\mathbf{q} \subseteq \mathbb{Z}$ is primary if and only if $\mathbf{q} = (0)$ or $\mathbf{q} = (p^n)$ for some prime number p and some $n \in \mathbb{N}_{>0}$.
- (b) Let k be a field, $A = k[X, Y, Z]/(XY Z^2)$, and $\mathfrak{p} = (\bar{X}, \bar{Z})$, where \bar{X}, \bar{Z} denote the classes of X, Z in A, respectively. Show that \mathfrak{p}^2 is not a primary ideal of A.
- (c) Let A be a commutative ring with 1 and $\mathfrak{p} \subsetneq A$ a prime ideal. Show that a \mathfrak{p} -primary ideal $\mathfrak{q} \subseteq A$ need not be equal to some power of \mathfrak{p} . Reciprocally, show that a power \mathfrak{p}^n with $n \in \mathbb{N}_{>0}$ need not be primary in general.

Exercise 4

- (a) Let A be a commutative ring with 1. Show that $A[X] \otimes_A A[Y] \cong A[X, Y]$.
- (b) Consider the natural embedding $i: \mathbb{C}[X] \longrightarrow \mathbb{C}[X, Y]$. Describe the induced map $i^*: \operatorname{Max}(\mathbb{C}[X, Y]) \longrightarrow \operatorname{Max}(\mathbb{C}[X])$ of the maximal ideals and show that it is well-defined.
- (c) Does the Zariski topology on $\operatorname{Spec}(\mathbb{C}[X, Y])$ coincide with the product of the Zariski topologies on $\operatorname{Spec}(\mathbb{C}[X])$ and $\operatorname{Spec}(\mathbb{C}[Y])$?