HU Berlin

Exercises for BMS Basic Course Commutative Algebra

Prof. Dr. Jürg Kramer

Sheet 11 (Week: 08.01. - 12.01.2024)

Exercise 1

Let k be a field, A = k[X, Y], $\mathfrak{q} = (X, Y^2)$, and $\mathfrak{m} = (X, Y)$. Show that:

- (a) The ideal \mathfrak{q} is an \mathfrak{m} -primary ideal.
- (b) There is a chain of strict inclusions $\mathfrak{m}^2 \subsetneq \mathfrak{q} \subsetneq \mathfrak{m}$.
- (c) Deduce from part (b) that q is not a power of a prime ideal of A.

Exercise 2

- (a) Find two different minimal primary decompositions of the ideal $\mathfrak{a} = (X^2, XY)$ in the polynomial ring k[X, Y] over the field k. Illustrate on the basis of this example the first and the second uniqueness theorems for minimal primary decompositions.
- (b) Let $\mathfrak{p}_1 = (X, Y)$, $\mathfrak{p}_2 = (X, Z)$, and $\mathfrak{m} = (X, Y, Z)$ be three ideals in the polynomial ring k[X, Y, Z] over the field k. Letting $\mathfrak{a} = \mathfrak{p}_1 \mathfrak{p}_2$, show that $\mathfrak{a} = \mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \mathfrak{m}^2$ is a minimal primary decomposition of \mathfrak{a} and determine the isolated and embedded prime ideals.

Exercise 3

Let A be a commutative ring with 1 and $\mathfrak{p} \subseteq A$ be a prime ideal. For any $n \in \mathbb{N}_{>0}$, the *n*-th symbolic prime power $\mathfrak{p}^{(n)}$ of \mathfrak{p} is defined to be the contraction of the ideal $\mathfrak{p}_{\mathfrak{p}}^n \subseteq A_{\mathfrak{p}}$ under the localization homomorphism $A \longrightarrow A_{\mathfrak{p}}$. Show that:

- (a) The *n*-th symbolic prime power $\mathbf{p}^{(n)}$ is a **p**-primary ideal.
- (b) If \mathfrak{p}^n has a primary decomposition, then $\mathfrak{p}^{(n)}$ is its \mathfrak{p} -primary component.
- (c) We have $\mathbf{p}^{(n)} = \mathbf{p}^n$ if and only if \mathbf{p}^n is **p**-primary.

Exercise 4

Let A be a commutative ring with 1 and $S \subseteq A$ a multiplicatively closed subset. Let $f \in A$ and $\mathfrak{p} \in \operatorname{Spec}(A)$.

(a) Show that the natural ring homomorphism $A \longrightarrow S^{-1}A$ induces a homeomorphism

$$\operatorname{Spec}(S^{-1}A) \cong \{ \mathfrak{q} \in \operatorname{Spec}(A) \mid S \cap \mathfrak{q} = \emptyset \} \subseteq \operatorname{Spec}(A).$$

(b) Show that the natural ring homomorphism $A \longrightarrow A_f$ induces a homeomorphism

$$\operatorname{Spec}(A_f) \cong D(f) \subseteq \operatorname{Spec}(A).$$

(c) Show that the natural ring homomorphism $A \longrightarrow A_{\mathfrak{p}}$ induces a homeomorphism

$$\operatorname{Spec}(A_{\mathfrak{p}}) \cong \{\mathfrak{q} \in \operatorname{Spec}(A) \mid \mathfrak{q} \subseteq \mathfrak{p}\} \subseteq \operatorname{Spec}(A).$$