HU Berlin

Exercises for BMS Basic Course Commutative Algebra

Prof. Dr. Jürg Kramer

Sheet 2 (Week: 23.10. – 27.10.2023)

Exercise 1

- (a) Determine the nilradical $\mathfrak{N}_{\mathbb{Z}}$ and the Jacobson radical $\mathfrak{R}_{\mathbb{Z}}$ of the ring of integers \mathbb{Z} .
- (b) Is the ring of integers \mathbb{Z} a local ring? Prove or disprove this statement. For which $n \in \mathbb{N}$ is the quotient ring $\mathbb{Z}/(n)$ a local ring? Prove your answer.
- (c) Let A be a commutative ring with 1 and \mathfrak{N}_A its nilradical. Show that the following are equivalent:
 - (i) A has exactly one prime ideal.
 - (ii) Every element of A is either a unit or nilpotent.
 - (iii) A/\mathfrak{N}_A is a field.

Exercise 2

Let A be a commutative ring with 1.

- (a) Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ $(n \in \mathbb{N}$ with n > 1) be prime ideals of A and let \mathfrak{a} be an ideal contained in the union $\bigcup_{j=1}^n \mathfrak{p}_j$. Prove that $\mathfrak{a} \subseteq \mathfrak{p}_j$ for at least one $j \in \{1, \ldots, n\}$.
- (b) Let $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ $(n \in \mathbb{N}$ with n > 1) be ideals of A and let \mathfrak{p} be a prime ideal containing the intersection $\bigcap_{j=1}^n \mathfrak{a}_j$. Prove that $\mathfrak{a}_j \subseteq \mathfrak{p}$ for at least one $j \in \{1, \ldots, n\}$. Moreover, show: If $\mathfrak{p} = \bigcap_{j=1}^n \mathfrak{a}_j$, then $\mathfrak{p} = \mathfrak{a}_j$ for some $j \in \{1, \ldots, n\}$.

Exercise 3

Let A be a commutative ring with 1. We consider the set

 $\operatorname{Spec}(A) \coloneqq \{ \mathfrak{p} \subsetneq A \, | \, \mathfrak{p} \text{ prime ideal} \}$

of all prime ideals of A. For a subset $S \subseteq A$, let

$$V(S) \coloneqq \{ \mathfrak{p} \in \operatorname{Spec}(A) \, | \, \mathfrak{p} \supseteq S \}$$

denote the set of all prime ideals of A containing S.

- (a) Prove that $V(S) = V(\mathfrak{a}) = V(\mathfrak{r}(\mathfrak{a}))$, where \mathfrak{a} denotes the ideal generated by the set S in A.
- (b) Show that the sets V(S), where S ranges over the subsets of A, satisfy the axioms for closed sets of a topology in Spec(A).
 The resulting topology on Spec(A) is called the Zariski topology; the topological space Spec(A) is called the prime spectrum of A.