HU Berlin

Exercises for BMS Basic Course Commutative Algebra

Prof. Dr. Jürg Kramer

Sheet 3 (Week: 30.10. – 03.11.2023)

Exercise 1

Let $A \coloneqq C([0,1],\mathbb{R})$ denote the ring of continuous, real-valued functions on the interval [0,1].

(a) Let $x \in [0, 1]$. Show that the set

$$\mathfrak{m}_x \coloneqq \{ f \in A \,|\, f(x) = 0 \}$$

is a maximal ideal in A.

- (b) For an integer n > 1, let $f_1, \ldots, f_n \in A$ be continuous functions without any common zero. Show that $f_1^2 + \ldots + f_n^2$ is a unit in A.
- (c) Let $\mathfrak{a} \subsetneq A$ be a proper ideal and let

 $V(\mathfrak{a}) \coloneqq \{a \in [0,1] \mid f(a) = 0 \text{ for every } f \in \mathfrak{a}\}$

be the set of common zeros of all functions in \mathfrak{a} . Prove that $V(\mathfrak{a}) \neq \emptyset$.

(d) Use (c) to deduce that $Max(A) = \{\mathfrak{m}_x \mid x \in [0, 1]\}$ and show that the map

 $[0,1] \longrightarrow \operatorname{Max}(A),$

induced by the assignment $x \mapsto \mathfrak{m}_x$, is a bijection.

Exercise 2

- (a) Use the classification of finitely generated abelian groups to derive a classification of finitely generated Z-modules up to isomorphism.
- (b) Show that \mathbb{Q} is not \mathbb{Z} -free. Further, prove that $\mathbb{Z}/n\mathbb{Z}$ is not \mathbb{Z} -free, but $\mathbb{Z}/n\mathbb{Z}$ -free.
- (c) Let A be a commutative ring with 1. Show that every finitely generated A-module is A-free if and only if A is a field.
- (d) Let A be a commutative ring with 1 and M an A-module. Fix an A-endomorphism $f \in \operatorname{End}_A(M)$. Then, we can define a scalar multiplication by elements of the polynomial ring A[T] on M by setting

$$(p(T), m) \mapsto p(f)(m) \qquad (p \in A[T], m \in M).$$

Show that this endows M with the structure of an A[T]-module.

Exercise 3

- (a) Let A be a commutative ring with 1 and $\mathfrak{a} \subseteq A$ an ideal such that for all finitely generated A-modules M, the equality $\mathfrak{a}M = M$ implies M = 0. Show that \mathfrak{a} is contained in the Jacobson radical \mathfrak{R}_A of A.
- (b) Let A be a commutative ring with 1 and $\mathfrak{a} \subseteq A$ an ideal. Let M be an A-module such that $\mathfrak{a}M = M$. If \mathfrak{a} is nilpotent, i.e., $\mathfrak{a}^n = 0$ for some $n \in \mathbb{N}_{>0}$, show that M = 0.
- (c) Let A be a local ring with maximal ideal \mathfrak{m} . Let M be an A-module and N a finitely generated A-module together with an A-module homomorphism $f: M \longrightarrow N$. If the induced A-module homomorphism $f_{\mathfrak{m}}: M/\mathfrak{m}M \longrightarrow N/\mathfrak{m}N$ is surjective, show that f is also surjective.
- (d) Let A be a commutative ring with 1 and M a finitely generated A-module. Show that every surjective A-module endomorphism $f: M \longrightarrow M$ is also injective. Hint: View M as an A[T]-module as in Exercise 2, part (d).

Exercise 4

Let A be a commutative ring with 1. For $f \in A$, we define the *distinguished* or *basic set*

$$D(f) \coloneqq \operatorname{Spec}(A) \setminus V(f)$$

to be the complement of V(f) in Spec(A). Show that the distinguished sets D(f) $(f \in A)$ are open and that they form a basis of open sets for the Zariski topology of Spec(A). Furthermore, prove that for $f, g \in A$ we have:

- (a) $D(f) \cap D(g) = D(f \cdot g).$
- (b) $D(f) = \emptyset \iff f$ is nilpotent.
- (c) $D(f) = \operatorname{Spec}(A) \iff f \in A^{\times}.$
- (d) $D(f) = D(g) \iff \mathfrak{r}(f) = \mathfrak{r}(g).$ Here, $\mathfrak{r}(f)$ denotes the radical of the principal ideal (f).