# Exercises for BMS Basic Course <br> Commutative Algebra 

Prof. Dr. Jürg Kramer

## Sheet 4 (Week: 06.11. - 10.11.2023)

## Exercise 1

Let $K$ be a field and $K[W, X, Y, Z]$ be the polynomial ring in the four variables $W, X, Y, Z$ over $K$. Let $\mathfrak{a} \subseteq K[W, X, Y, Z]$ be the ideal generated by the $(2 \times 2)$-minors of the matrix

$$
\left(\begin{array}{ccc}
X & Y & Z \\
Y & Z & W
\end{array}\right)
$$

i. e., $\mathfrak{a}=\left(W Y-Z^{2}, W X-Y Z, X Z-Y^{2}\right)$, and put $A:=K[W, X, Y, Z] / \mathfrak{a}$; we denote by $\bar{W}, \bar{X}, \bar{Y}, \bar{Z}$ the images of $W, X, Y, Z$ in the ring $A$, respectively.
(a) Show that $A$ is a finitely generated module over $B:=K[\bar{W}, \bar{X}]$.
(b) Show that $A$ is in fact a free $B$-module by constructing a basis for $A$ over $B$.
(c) Show that $A$ is not finitely generated as a $K[\bar{X}, \bar{Y}]$-module.

## Exercise 2

Let $A$ be a commutative ring with 1 .
(a) Show that the following are equivalent:
(i) A sequence of $A$-modules

$$
M^{\prime} \xrightarrow{u} M \xrightarrow{v} M^{\prime \prime} \longrightarrow 0
$$

is exact.
(ii) For all $A$-modules $N$, the induced sequence

$$
0 \longrightarrow \operatorname{Hom}_{A}\left(M^{\prime \prime}, N\right) \xrightarrow{\bar{v}} \operatorname{Hom}_{A}(M, N) \xrightarrow{\bar{u}} \operatorname{Hom}_{A}\left(M^{\prime}, N\right)
$$

is exact.
(b) Give a counterexample to the analogous claim of part (a) if, in addition, $u$ is assumed to be injective and $\bar{u}$ is assumed to be surjective.

## Exercise 3

Consider the commutative diagram of short exact sequences of $A$-modules


Then the induced sequence

with $\bar{u}, \bar{v}, \bar{u}^{\prime}, \bar{v}^{\prime}$, and $d$ defined as in the course, is an exact sequence of $A$-modules with well-defined $A$-module homomorphisms.
The exactness at $\operatorname{ker}\left(f^{\prime}\right)$, $\operatorname{ker}(f)$, coker $(f)$, and $\operatorname{coker}\left(f^{\prime \prime}\right)$ have been proven in the course. Finish the proof by showing the exactness at $\operatorname{ker}\left(f^{\prime \prime}\right)$ and $\operatorname{coker}\left(f^{\prime}\right)$.

## Exercise 4

Let $A$ be a commutative ring with 1 . Prove the following assertions:
(a) The set $\{\mathfrak{p}\}$ is closed in $\operatorname{Spec}(A)$ if and only if $\mathfrak{p}$ is a maximal ideal.
(b) $\overline{\{\mathfrak{p}\}}=V(\mathfrak{p})$.
(c) $\mathfrak{q} \in \overline{\{\mathfrak{p}\}} \Longleftrightarrow \mathfrak{q} \supseteq \mathfrak{p}$.

Answer the following questions and prove your answers:
(d) Is $\operatorname{Spec}(A)$ a $T_{0^{-}}$or Kolmogorov-space? This means that if $\mathfrak{p}$ and $\mathfrak{q}$ are distinct points of $\operatorname{Spec}(A)$, then either there is a neighborhood of $\mathfrak{p}$ which does not contain $\mathfrak{q}$, or else there is a neighborhood of $\mathfrak{q}$ which does not contain $\mathfrak{p}$.
(e) Is $\operatorname{Spec}(A)$ a $T_{1}$ - or Hausdorff-space? This means that if $\mathfrak{p}$ and $\mathfrak{q}$ are distinct points of $\operatorname{Spec}(A)$, then there is a neighborhood $U$ of $\mathfrak{p}$ and a neighborhood $V$ of $\mathfrak{q}$ such that $U \cap V=\emptyset$.

