Exercises for BMS Basic Course
 Commutative Algebra

Prof. Dr. Jürg Kramer

Sheet 9 (Week: 11.12. - 15.12.2023)

Exercise 1

Let A be a commutative ring with 1 and $S \subseteq A$ a multiplicatively closed subset. Let M, N be A-modules. Show that there exists a uniquely determined $S^{-1} A$-module isomorphism

$$
S^{-1} M \otimes_{S^{-1} A} S^{-1} N \cong S^{-1}\left(M \otimes_{A} N\right)
$$

induced by the assignment

$$
\frac{m}{s} \otimes \frac{n}{t} \mapsto \frac{m \otimes n}{s t} \quad(m \in M ; n \in N ; s, t \in S) .
$$

Hint: Start with the $S^{-1} A$-bilinear map

$$
f: S^{-1} M \times S^{-1} N \longrightarrow S^{-1}\left(M \otimes_{A} N\right)
$$

induced by the assignment

$$
\left(\frac{m}{s}, \frac{n}{t}\right) \mapsto \frac{m \otimes n}{s t},
$$

and use the universal property of the tensor product to get a uniquely determined $S^{-1} A$ module homomorphism

$$
f^{\prime}: S^{-1} M \otimes_{S^{-1} A} S^{-1} N \longrightarrow S^{-1}\left(M \otimes_{A} N\right)
$$

Then, verify explicitly that f^{\prime} is surjective and injective.

Exercise 2

Let A be a commutative noetherian ring with 1 .
(a) Let $S \subseteq A$ be a multiplicatively closed subset. Show that $S^{-1} A$ is also a noetherian ring.
(b) Show that the ring $A[[X]]$ of formal power series in the variable X over A is also a noetherian ring.
(c) Let $B \subseteq A$ be a subring. Is B necessarily noetherian?

Exercise 3

Let A be a commutative ring with 1 .
(a) Let $0 \longrightarrow M^{\prime} \longrightarrow M \longrightarrow M^{\prime \prime} \longrightarrow 0$ be a short exact sequence of A-modules. Show that M is noetherian if and only if both M^{\prime} and $M^{\prime \prime}$ are noetherian.
(b) Let $M_{j}(j=1, \ldots, n)$ be noetherian A-modules. Show that their direct sum $\bigoplus_{j=1}^{n} M_{j}$ is also a noetherian A-module.

Exercise 4

Let A, B, and C be commutative rings with 1 . Let $\varphi: A \longrightarrow B$ be a homomorphism of rings and let $\varphi^{*}: \operatorname{Spec}(B) \longrightarrow \operatorname{Spec}(A)$ be the induced map given by the assignment $\mathfrak{p} \mapsto \varphi^{-1}(\mathfrak{p})$.
(a) Show that $\varphi^{*-1}(D(f))=D(\varphi(f))$ for any $f \in A$, and deduce that the map φ^{*} is continuous.
(b) The ideal $\varphi^{-1}(\mathfrak{b}) \subseteq A$ is called the contraction $\mathfrak{b}^{\text {c }}$ of the ideal $\mathfrak{b} \subseteq B$. The ideal generated by $\varphi(\mathfrak{a})$ in B is called the extension $\mathfrak{a}^{\mathbf{e}}$ of the ideal $\mathfrak{a} \subseteq A$.
Show that $\mathfrak{a} \subseteq \mathfrak{a}^{\text {ec }}$ and $\mathfrak{b} \supseteq \mathfrak{b}^{\text {ce }}$. Further, show that $\mathfrak{a}^{\mathrm{e}}=\mathfrak{a}^{\text {ece }}$ and $\mathfrak{b}^{\mathbf{c}}=\mathfrak{b}^{\text {cec }}$.
(c) Prove that $\varphi^{*-1}(V(\mathfrak{a}))=V\left(\mathfrak{a}^{\mathrm{e}}\right)$ for any ideal $\mathfrak{a} \subseteq A$ and that $\overline{\varphi^{*}(V(\mathfrak{b}))}=V\left(\mathfrak{b}^{\mathrm{c}}\right)$ for any ideal $\mathfrak{b} \subseteq B$.
(d) Let $\psi: B \longrightarrow C$ be a homomorphism of rings. Show that $(\psi \circ \varphi)^{*}=\varphi^{*} \circ \psi^{*}$.

Note that, from (a) and (d), it follows that Spec becomes a contravariant functor from the category of commutative rings with 1 to the category of topological spaces.

