Exercises for BMS Basic Course Commutative Algebra

Prof. Dr. Jürg Kramer

Sheet 9 (Week: 11.12. – 15.12.2023)

Exercise 1

Let A be a commutative ring with 1 and $S \subseteq A$ a multiplicatively closed subset. Let M, N be A-modules. Show that there exists a uniquely determined $S^{-1}A$ -module isomorphism

$$S^{-1}M \otimes_{S^{-1}A} S^{-1}N \cong S^{-1}(M \otimes_A N),$$

induced by the assignment

$$\frac{m}{s} \otimes \frac{n}{t} \mapsto \frac{m \otimes n}{st} \qquad (m \in M; \, n \in N; \, s, t \in S).$$

Hint: Start with the $S^{-1}A$ -bilinear map

$$f: S^{-1}M \times S^{-1}N \longrightarrow S^{-1}(M \otimes_A N),$$

induced by the assignment

$$\left(\frac{m}{s},\frac{n}{t}\right)\mapsto \frac{m\otimes n}{st},$$

and use the universal property of the tensor product to get a uniquely determined $S^{-1}A$ -module homomorphism

$$f'\colon S^{-1}M\otimes_{S^{-1}A}S^{-1}N\longrightarrow S^{-1}(M\otimes_A N).$$

Then, verify explicitly that f' is surjective and injective.

Exercise 2

Let A be a commutative noetherian ring with 1.

- (a) Let $S \subseteq A$ be a multiplicatively closed subset. Show that $S^{-1}A$ is also a noetherian ring.
- (b) Show that the ring A[[X]] of formal power series in the variable X over A is also a noetherian ring.
- (c) Let $B \subseteq A$ be a subring. Is B necessarily noetherian?

Exercise 3

Let A be a commutative ring with 1.

- (a) Let $0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$ be a short exact sequence of A-modules. Show that M is noetherian if and only if both M' and M'' are noetherian.
- (b) Let M_j (j = 1, ..., n) be notherian A-modules. Show that their direct sum $\bigoplus_{j=1}^n M_j$ is also a noetherian A-module.

Exercise 4

Let A, B, and C be commutative rings with 1. Let $\varphi \colon A \longrightarrow B$ be a homomorphism of rings and let $\varphi^* \colon \operatorname{Spec}(B) \longrightarrow \operatorname{Spec}(A)$ be the induced map given by the assignment $\mathfrak{p} \mapsto \varphi^{-1}(\mathfrak{p}).$

- (a) Show that $\varphi^{*-1}(D(f)) = D(\varphi(f))$ for any $f \in A$, and deduce that the map φ^* is continuous.
- (b) The ideal φ⁻¹(b) ⊆ A is called the *contraction* b^c of the ideal b ⊆ B. The ideal generated by φ(a) in B is called the *extension* a^e of the ideal a ⊆ A.
 Show that a ⊆ a^{ec} and b ⊇ b^{ce}. Further, show that a^e = a^{ece} and b^c = b^{cec}.
- (c) Prove that $\varphi^{*-1}(V(\mathfrak{a})) = V(\mathfrak{a}^{e})$ for any ideal $\mathfrak{a} \subseteq A$ and that $\overline{\varphi^{*}(V(\mathfrak{b}))} = V(\mathfrak{b}^{c})$ for any ideal $\mathfrak{b} \subseteq B$.
- (d) Let $\psi \colon B \longrightarrow C$ be a homomorphism of rings. Show that $(\psi \circ \varphi)^* = \varphi^* \circ \psi^*$.

Note that, from (a) and (d), it follows that Spec becomes a contravariant functor from the category of commutative rings with 1 to the category of topological spaces.