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1 Introduction

The Korteweg–de Vries (KdV) equation

∂tu = −∂3
xu+ 6u∂xu, u(t, x) ∈ R, t, x ∈ R, (1.1)

is a widely used model equation for describing dispersive phenomena. It is named after the two Dutch
mathematician Korteweg and de Vries [29] (see also Boussinesq [12], Raleigh [38]). The pioneering numerical
experiments by Kruskal and Zabusky (see [31]) on special solutions of (1.1), referred to as solitons, the seminal
discovery by Gardner, Greene, Kruskal, and Miura that (1.1) admits infinitely many conservation laws ([23],
[36]), and the invention of the concept of what nowadays is referred to as a Lax pair representation of
evolution equations such as (1.1) by Lax [35] led to the modern theory of integrable systems of finite and
infinite dimension (see, e.g., [17], [20], and references therein). As one of the most prominent examples among
dispersive equations, equation (1.1) has been extensively studied and played a major role in the development
of the theory of dispersive PDEs to which many of the leading analysts of our times contributed. In particular,
the (globally in time) well-posedness of (1.1) has been established in various setups in great detail – see [15].

In the sequel we consider (1.1) on the torus T := R/Z. We record that for any integer s ≥ 0, equation (1.1)
is globally (in time) C0-well-posed in the Sobolev space Hs ≡ Hs(T,R), consisting of functions q, whose
Fourier expansions q(x) =

∑
n∈Z q̂(n)einx satisfy

q̂−n = q̂(n), ∀n ∈ Z, ‖q‖s :=

(∑
n∈Z
〈n〉2s|q̂(n)|2

)1/2

<∞,

where 〈n〉 := max{1, |n|}. A distinguished feature of equation (1.1) is that all its solutions in Hs with s ≥ 0,
are almost periodic (in time) and that they can be approximated by quasi-periodic (in time) solutions,
referred to as finite gap solutions, which densely fill finite dimensional invariant tori (see, e.g., [27]). Due
to the importance of finite gap solutions, their stability, in particular their structural stability, is of great
interest. It encompasses two major issues:

(1) The persistence of quasi-periodic solutions (and of the finite dimensional invariant tori on which they
evolve) under(small) perturbations of (1.1).

(2) The long time asymptotics of solutions of perturbations of (1.1) with initial data close to the orbit of
a finite gap solution and hence close to the corresponding finite dimensional invariant torus.
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In the last thirty years, the persistence of quasi-periodic solutions of integrable PDEs such as (1.1) has
been extensively studied. KAM type methods, which were pioneered by Kolmogorov, Arnold, and Moser to
treat perturbations of finite dimensional integrable system, were developed for (Hamiltonian) PDEs which
allowed to prove that a large portion of these quasi-periodic solutions persist – see [32], [33], [34], [39], [10],
[27], [1], [8], and references therein.

Concerning item (2), for Hamiltonian perturbations of linear integrable PDEs on T, which satisfy non-
resonance conditions, a normal form method has been developed allowing to prove the stability of the
equilibrium solution u ≡ 0 of (Hamiltonian) perturbations for large time intervals – see, e.g., [2], [3], [4],
[7], [11], [13], [14], [22], and references therein. More recently, these techniques have been refined so that
in specific cases, such results can also be proved for Hamiltonian perturbations of resonant linear integrable
PDEs by approximating the perturbed equation by nonlinear integrable systems, satisfying non-resonance
conditions – see [11], [5], [6]. In contrast, first results on the long time asymptotics of solutions of perturba-
tions of integrable PDEs such as (1.1) with possibly large initial data close to an invariant finite dimensional
torus were obtained only very recently. In [26], such results are obtained for the KdV equation.

It turns out that the time of stability of solutions of perturbations of (1.1) with initial data close to finite
gap solutions of (1.1) is closely related to resonances or almost resonances of the KdV frequencies. The goal
of this paper is to discuss number theoretic properties of these frequencies which are relevant for the time
of stability of the solutions mentioned above.

2 Stability of finite gap solutions of the KdV equation

In this section we describe the results in [26] on the stability of solutions of perturbations of (1.1) with initial
data close to finite gap solutions of (1.1) in more detail and then state the main result of this paper, which
concerns number theoretic properties of the KdV frequencies.

We begin with some preliminary considerations. It is well known that (1.1) is a Hamiltonian PDE with
Poisson structure ∂x,

∂tu = ∂x∇H, H(u) =

1∫
0

(
1

2
(∂xu)2 + u3

)
dx, (2.1)

where ∇H denotes the L2-gradient of H. We consider semilinear Hamiltonian perturbations of the form

∂tu = ∂x∇H + ε∂x∇F, F (u) =

1∫
0

f(x, u(x)) dx, (2.2)

where ε is a small perturbation parameter and the density f : T × R → R of F is C∞-smooth and might

depend explicitly on x. Note that û(t, 0) =
∫ 1

0
u(t, x) dx (mass) of any solution of (2.1) or of (2.2) is conserved

and hence the subspace

Hs
0 :=

{
q ∈ Hs

∣∣∣∣ q̂(0) =

∫ 1

0

q(x) dx = 0

}
of Hs is left invariant by (2.1) as well as by (2.2) (see [27], Section 13). It means that for any initial data
u0 ∈ Hs

0 with s ≥ 0, the solution u of (2.1) in Hs
0 with initial data u0 evolves in Hs

0 as

u : R −→ Hs
0 ,

given by the assignment t 7→ u(t) = u(t, ·) with initial condition u(0) = u0. To simplify the exposition, we
choose Hs

0 as our phase space. The corresponding space of Fourier coefficients is denoted by hs0, i.e.,

hs0 :=
{

(wn)n∈Z0 ∈ hs0,c
∣∣w−n = wn, ∀n ≥ 1

}
,
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where

Z0 := N ∪ (−N) with N := {1, 2, . . .}

and hs0,c ≡ hs(Z0,C) is defined to be the sequence space

hs0,c :=
{
w = (wn)n∈Z0

∣∣wn ∈ C, ∀n 6= 0, ‖w‖s <∞
}
, ‖w‖s :=

(∑
n 6=0

|n|2s|wn|2
)1/2

.

It turns out that (2.1) admits a nonlinear Fourier transform. It is described by the following theorem in
a somewhat informal way. For a precise statement and its proof see [27].

Theorem 2.1. ([27]) There exists a map

Φ: L2
0 ≡ H0

0 −→ `20 ≡ h0
0, q 7→ w(q) := (wn(q))n∈Z0

,

so that wn(q), n 6= 0, are nonlinear Fourier coefficients for (2.1) with

In(q) :=
1

2πn
wn(q)w−n(q) ≥ 0, ∀n ≥ 1,

being action variables and hence prime integrals of (2.1). More precisely, the following holds:

(1) For any integer s ≥ 0, the map Φ|Hs0 : Hs
0 −→ hs0 is a real analytic diffeomorphism.

(2) H ◦ Φ−1 is a real analytic functional H of the actions I := (In)n∈N alone.

(3) Equation (2.1), when expressed in the nonlinear Fourier coefficients, takes the form

∂twn(t) = i ωnwn(t), ∀n ∈ Z0, (2.3)

where ωn ≡ ωn(I), n 6= 0, denote the KdV frequencies,

ωn(I) := ∂InH(I), ω−n(I) := −ωn(I), ∀n ∈ N. (2.4)

Since the actions In, n ≥ 1, are prime integrals of (2.1), so are the frequencies. As a consequence, (2.3) can
be solved by quadrature,

wn(t) = wn(0)eiωnt, ∀ t ∈ R, ∀n ∈ Z0.

We are now in a position to introduce in more precise terms the notion of finite gap solutions of (2.1)
and the invariant tori, on which they evolve. For any finite subset S+ ⊆ N := {1, 2, . . .}, let

S := S+ ∪ (−S+), S⊥ := Z0 \ S.

Definition 2.1. An element q ∈ L2
0 is said to be an S-gap potential if

wn(q) 6= 0, ∀n ∈ S, wn(q) = 0, ∀n ∈ S⊥.

We denote by MS the set of all S-gap potentials of L2
0. By Theorem 2.1, MS is contained in

⋂
s≥0H

s
0

and invariant under the flow of (2.1). We say that u(t, x) is a finite gap solution of (2.1) if u(t, x) is in MS

for some S with S+ ⊂ N finite.
Due to the presence of small divisors, the stability result in [26] imposes non-resonance conditions on the

KdV frequencies (2.4). To describe them, let us introduce for any given finite subset S+ of N the action to
frequency map,

ω : RS+

>0 −→ RS+ , IS = (In)n∈S+ 7→ (ωn(IS , 0))n∈S+ ∈ RS+ , (2.5)

where for notational convenience, we write (IS , 0) for the sequence of actions (In)n≥1 with In = 0 for any
n ∈ N \ S+. We remark that the action to frequency map ω is real analytic. The following lemma is due to
Krichever and its proof has been worked out in [9].
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Lemma 2.1. For any finite subset S+ ⊂ N, the map ω : RS+

>0 → RS+ is a local diffeomorphism.

It turns out to be convenient to locally parametrize the invariant tori of S-gap potentials by ω. More

precisely, let Ξ ⊂ RS+

>0 be a closed ball so that ω : Ξ→ Π := ω(Ξ) is a diffeomorphism onto Π. Denote by µ
its inverse,

µ : Π −→ Ξ, ω 7→ µ(ω),

and define Tµ(ω) to be the torus of S-gap potentials with actions µn(ω) with n ∈ S+, given by

Tµ(ω) := Φ−1
({(

(wn)n∈S , 0
)
∈ h0

0

∣∣ |wn|2 = 2πnµn(ω), ∀n ∈ S+

})
.

Note that the torus Tµ(ω) has dimension |S+|, is invariant under (2.1), and is Lyapunov stable in Hs
0 for any

s ≥ 0, meaning that for any ε > 0 there exists δ > 0, depending on s, so that for any initial data u0 ∈ Hs
0

with

distHs
(
u0,Tµ(ω)

)
≤ δ, distHs

(
u0,Tµ(ω)

)
:= inf

q∈Tµ(ω)

‖u0 − q‖s, (2.6)

the solution u(t, ·) of (2.1) with u(0, ·) = u0 satisfies

distHs
(
u(t, ·),Tµ(ω)

)
≤ ε, ∀ t ∈ R.

Finally, we introduce the so called normal frequencies,

Ωj(ω) := ωj(µ(ω), 0), ∀ j ∈ S⊥, ∀ω ∈ Π, (2.7)

which have the following properties:

Lemma 2.2. ([25, Lemma C.7]) For any ω ∈ Π, the normal frequencies admit an asymptotic expansion of
the form

Ωj(ω) = (2πj)3 + α
1

j
+O

(
1

j3

)
, as j → ±∞, (2.8)

where the error term is uniform in ω and real analytic on Π. The coefficient α : Π→ R is real analytic and
conserved by the flow of (2.1).

Remark 2.1. It can be shown that the coefficient α in the asymptotic expansion (2.8) does not vanish
identically. See Appendix A for a proof.

Note that (2πj)3 with j ∈ Z, are the frequencies of the Airy equation, ∂tv = −∂3
xv, which can be viewed

as the linearization of (1.1) at the stationary solution u ≡ 0. For the following definition of non-resonance
conditions, it is convenient to define for any vector ` = (`n)n∈S+

in ZS+ ,

〈`〉 := max
{

1,
( ∑
n∈S+

|`n|2
)1/2}

.

Definition 2.2. (Non-resonance conditions) For any 0 < γ < 1 and for any τ > |S+|, introduce the following

subsets Π
(i)
γ ≡ Π

(i)
γ,τ , 0 ≤ i ≤ 3, of Π,

Π(0)
γ :=

{
ω ∈ Π

∣∣ |ω · `| ≥ γ

〈`〉τ
, ∀ ` ∈ ZS+ \ {0}

}
,

Π(1)
γ :=

{
ω ∈ Π

∣∣ |ω · `+ Ωj(ω)| ≥ γ

〈`〉τ
, ∀ (`, j) ∈ ZS+ × S⊥

}
,

Π(2)
γ :=

{
ω ∈ Π

∣∣ |ω · `+ Ωj1(ω) + Ωj2(ω)| ≥ γ

〈`〉τ
, (2.9)

∀ (`, j1, j2) ∈ ZS+ × S⊥ × S⊥ with (`, j1, j2) 6= (0, j1,−j1)
}
,

Π(3)
γ :=

{
ω ∈ Π

∣∣ |ω · `+ Ωj1(ω) + Ωj2(ω) + Ωj3(ω)| ≥ γ

〈`〉τ (j1j2j3)2
,

∀ (`, j1, j2, j3) ∈ ZS+ × S⊥ × S⊥ × S⊥ with jk + jl 6= 0, ∀ 1 ≤ k, l ≤ 3
}
.

We refer to Π
(i)
γ , 0 ≤ i ≤ 3, as the i-th Melnikov conditions.
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Note that the term 1/(j1j2j3)2 in the third Melnikov conditions can be viewed as a loss of derivatives in
space. Such a loss needs to be admitted in order to prove the following measure estimate.

Proposition 2.1. ([26, Proposition 8.1]) For any τ > |S+|, we have

lim
γ→0

meas(Π \Π(i)
γ ) = 0, ∀ 0 ≤ i ≤ 3.

Remark 2.2. To prove that meas(Π\Π
(3)
γ ) converges to 0 as γ → 0, one uses that by Fermat’s last theorem

for the special case of cubic powers, proved by Euler [19], one has

∣∣ 3∑
k=1

j3
k

∣∣ ≥ 1, ∀ (j1, j2, j3) ∈ Z3 with jk + jl 6= 0, ∀ 1 ≤ k, l ≤ 3. (2.10)

We refer to Section 4 for a general discussion on cubic diophantine equations, relevant in the context of the
KdV frequencies.

To state the main result of [26], we need to introduce one additional notation. Let X be a Banach space
with norm ‖ · ‖X , k ≥ 0 an integer, and J ⊂ R an interval. We then denote by Ck(J,X) the Banach space
of k times continuously differentiable functions f : J → X, endowed with the supremum norm,

‖f‖Ck := sup
{
‖∂jt f(t)‖X

∣∣ t ∈ J, 0 ≤ j ≤ k
}
.

Theorem 2.2. ([26, Theorem 1.1]) Let f : T → R be C∞-smooth, S+ a finite subset of N, and τ > |S+|.
Then for any integer s sufficiently large and any 0 < γ < 1, there exists 0 < ε0 ≡ ε0(s, γ) < 1 with the

following properties: for any 0 < ε ≤ ε0, any ω ∈
⋂

0≤i≤3 Π
(i)
γ , and any initial data u0 ∈ Hs

0 , satisfying

distHs
(
u0,Tµ(ω)

)
≤ ε, (2.11)

equation (2.2) admits a unique solution t 7→ u(t, ·) in C0([−T, T ], Hs
0) ∩ C1([−T, T ], Hs−3

0 ) with initial data
u(0, x) = u0(x) and T = Ks,γ ε

−2. Moreover, u satisfies the estimate

distHs
(
u(t, ·),Tµ(ω)

)
≤Ms,γ ε, ∀ − T ≤ t ≤ T,

where the distance function distHs is defined in (2.6). For notational convenience, the dependence of the
constants Ks,γ > 0 and Ms,γ > 0 on f , S+, and τ is not indicated.

In informal terms, Theorem 2.2 can be stated as follows: For any smooth density f : T × R → R, s
sufficiently large, ε > 0 sufficiently small, and for most of the finite gap solutions q : t 7→ q(t, ·) of (1.1), the
following holds: for any initial data u0 ∈ Hs

0 , which is ε-close in Hs
0 to the orbit Oq := {q(t, ·) | t ∈ R} of q,

the perturbed equation (2.1) admits a unique solution t 7→ u(t, ·) in Hs
0 with initial data u(0, ·) = u0 and life

span at least [−T, T ] with T = O(ε−2). The solution u(t, ·) stays ε-close in Hs
0 to the orbit Oq.

The proof of Theorem 2.2 is based on a normal form procedure and a refined nonlinear Fourier transform,
which admits an expansion in terms of pseudodifferential operators [25]. This method is quite general and
it is to be expected that for any integrable PDE, admitting coordinates of the type constructed in [25],
a corresponding version of Theorem 2.2 holds, up to the measure estimates of Proposition 2.1 related to
the non-resonance conditions for the frequencies of the integrable PDE considered. These estimates might
require specific arithmetic properties of the frequencies. For further comments on Theorem 2.2, we refer the
reader to [26].

It is an open question whether the time interval [−T, T ] of stability of the solutions of the perturbed KdV
equation (2.2), considered in Theorem 2.2, can be proved to be larger. A first result of this paper concerns
number theoretic properties of the KdV frequencies, which would be needed to prove by the method of
normal forms that the length of this time interval is indeed larger – see Theorem 2.3 in paragraph (A) below.

In the case where the perturbation Hamiltonian in (2.2) is of the form F (u) =
∫ 1

0
f(u(x)) dx, some of

the resonances of the KdV frequencies can be ignored and it is expected that one can prove a result, similar
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to the one stated in Theorem 2.2, but with a longer time interval of stability. Note that such perturbations
are invariant under translation, i.e., for any τ ∈ R, we have F (uτ ) = F (u), where uτ denotes the translate
of u by τ and uτ (·) = u(·+ τ). In paragraph (B) below we discuss number theoretic properties of the KdV

frequencies, which would be needed for proving such a result for F of the form F (u) =
∫ 1

0
f(u(x)) dx.

(A) To show by a normal form procedure that the size of T in Theorem 2.2 is at least of the order of O(ε−3)
requires to impose in addition the 4th Melnikov conditions on the frequencies ω ∈ Π considered, i.e., for any
` ∈ ZS+ and any (jk)1≤k≤4 ∈ (S⊥)4 satisfying jk + jl 6= 0 with 1 ≤ k, l ≤ 4,

∣∣ω · `+

4∑
k=1

Ωjk(ω)
∣∣ ≥ γ

〈`〉τ (
∏4
k=1 jk)2

.

We denote by Π
(4)
γ the frequencies ω ∈ Π, satisfying the 4th Melnikov conditions. Following the line of

arguments above (see Proposition 2.1), one needs to prove (among other results) that limγ→0 meas(Π \
Π

(4)
γ ) = 0. A first difficulty in proving such a result arises due the fact that the analogue of equation (2.10)

no longer holds, i.e., there exist integer vectors (jk)1≤k≤4 ∈ Z4
0 with j1 ≤ j2 ≤ j3 ≤ j4 so that

4∑
k=1

j3
k = 0, jk + jl 6= 0, ∀ 1 ≤ k, l ≤ 4. (2.12)

Well known solutions of (2.12) are (see [18])

(−3,−4,−5, 6), (−10,−9, 1, 12), (−9, 1, 6, 8), (2.13)

and their non-zero integer multiples. In particular, it follows that (2.12) has infinitely many solutions. In
fact, according to [18], there are many more solutions of (2.12). Closely related to (2.12) is the Fermat cubic,
defined in P3(C) by the equation x3

1 + x3
2 + x3

3 + x3
4 = 0, which has been extensively studied in algebraic

geometry. We refer to Section 4 for a further discussion of (2.12).
To overcome the difficulty caused by the infinitely many solutions of (2.12), one can try to use the

asymptotics of the normal frequencies, stated in Proposition 2.2. The following theorem might suffice for

proving that limγ→0 meas(Π \Π
(4)
γ ) = 0.

Theorem 2.3. The system of equations

4∑
k=1

j3
k = 0,

4∑
k=1

1

jk
= 0, (2.14)

has no solutions (jk)1≤k≤4 ∈ Z4
0 satisfying

jk + jl 6= 0, ∀ 1 ≤ k, l ≤ 4. (2.15)

Proof. The proof will be given in Section 3.

(B) If the density f of the perturbation F (u) =
∫ 1

0
f(x, u(x)) dx (cf. (2.2)) does not explicitly depend on x,

i.e., F (u) =
∫ 1

0
f(u(x)) dx, then the momentum M(u) =

∫ 1

0
u(x)2 dx, which is conserved by (2.1), is also

a prime integral of equation (2.2). In this case one expects that the length of the time interval [−T, T ] of
stability in Theorem 2.2 is at least of the order of ε−3. One of the ingredients for proving such a result is
that the system of equations

4∑
k=1

j3
k = 0,

4∑
k=1

jk = 0, (2.16)

has no solutions (jk)1≤k≤4 ∈ Z4
0 satisfying

jk + jl 6= 0, ∀ 1 ≤ k, l ≤ 4. (2.17)
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This can be established by elementary means. Indeed, by substituting j4 = −j1 − j2 − j3 into the first
equation of (2.16), one gets

j3
1 + j3

2 + j3
3 − (j1 + j2 + j3)3 = −3(j1 + j2)(j1 + j3)(j2 + j3),

which shows that (2.16) has no integer solutions satisfying (2.17).
Going one step further, one might try to prove that the time interval [−T, T ] of stability of the solutions

of (2.2) in Theorem 2.2 for perturbations of the form F (u) =
∫ 1

0
f(u(x)) dx is at least of the order of ε−4.

Similarly as in item (A) above, a first difficulty in proving such a result arises from the fact that the system
of equations

5∑
k=1

j3
k = 0,

5∑
k=1

jk = 0, (2.18)

has infinitely many solutions (jk)1≤k≤5 ∈ Z5
0 satisfying

jk + jl 6= 0, ∀ 1 ≤ k, l ≤ 5. (2.19)

The infinitude of the set of integral solutions of the system of equations (2.18) satisfying (2.19) will be
discussed in Section 4.

In analogy to Theorem 2.3, one might try to overcome the difficulty for proving the corresponding measure
estimate, caused by the infinitely many integral solutions of the system of equations (2.18) satisfying (2.19),
in case the following question has an affirmative answer.

Question 2.1. Does the system of equations

5∑
k=1

j3
k = 0,

5∑
k=1

jk = 0,

5∑
k=1

1

jk
= 0, (2.20)

subject to the constraints

jk + jl 6= 0, ∀ 1 ≤ k, l ≤ 5, (2.21)

have no solutions (jk)1≤k≤5 ∈ Z5
0 ?

The likeliness for an affirmative answer of Question 2.1 will be discussed in Section 3 below.

3 Proofs and discussions

In this section, we prove Theorem 2.3 and then discuss Question 2.1, both stated in Section 2. We also
outline some general results from number theory which might be useful for establishing results of the type
of Theorem 2.3.

Proof of Theorem 2.3. Let us start by pointing out that in the end, the proof of Theorem 2.3 will be re-
duced to an elementary problem, which can be solved quite easily. In order to arrive at this reduction, we
reformulate the claim of Theorem 2.3 as follows.

Let us introduce the 3-dimensional complex projective space P3(C) with the homogenous coordinates
(x1 : x2 : x3 : x4). Then, the cubic equation

4∑
k=1

x3
k = 0
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defines a cubic surface S1 in P3(C). Similarly, the fractional equation

4∑
k=1

1

xk
= 0

defines also a cubic surface S2 in P3(C). Therefore, the system of equations

4∑
k=1

x3
k = 0,

4∑
k=1

1

xk
= 0 (3.1)

describes the intersection S1∩S2 of the two cubic surfaces S1 and S2, which is an algebraic curve C of degree
9 embedded in P3(C). Since it is easily checked that the set of non-zero integral solutions of the system of
equations (3.1) equals the set of non-zero rational solutions of the system of equations (3.1), the search of
solutions (jk)1≤k≤4 ∈ Z4

0 of the system of equations (2.14) amounts to the search of points on the curve C
having non-zero rational coordinates. Thus, it will be useful to compute the polynomial equation describing
the curve C explicitly, which will be done below by eliminating the variable x4.

Before doing so, it is helpful to also interpret the constraints (2.15), which the solutions (jk)1≤k≤4 ∈ Z4
0

of (2.14) have to satisfy, in the present algebraic geometric context. For this, we observe that the system of
equations (3.1) admits solutions satisfying the linear relations

xk + xl = 0, ∀ 1 ≤ k, l ≤ 4, (3.2)

which we call trivial solutions. Therefore, in order to prove Theorem 2.3, we have to show that the curve C
contains only points having rational coordinates of which at least one is zero.

As promised, we are now going to compute the polynomial equation describing the curve C in P2(C)
with the homogeneous coordinates (x1 : x2 : x3) by eliminating the variable x4. For this we use the second
equation in (3.1) to obtain

1

x4
= − 1

x1
− 1

x2
− 1

x3

= −x1x2 + x1x3 + x2x3

x1x2x3
,

which we rewrite as

x4 = − x1x2x3

x1x2 + x1x3 + x2x3
. (3.3)

Substituting (3.3) into the first equation of (3.1) and multiplying by (x1x2 + x1x3 + x2x3)3, yields

(x1x2 + x1x3 + x2x3)3(x3
1 + x3

2 + x3
3)− (x1x2x3)3 = 0, (3.4)

which is the polynomial equation describing the curve C in P2(C).
We note that a rational solution (x1 : x2 : x3 : x4) ∈ P3(Q) of the system of equations (3.1) with

x1x2x3x4 6= 0 gives rise to a solution (x1 : x2 : x3) ∈ P3(Q) of (3.4) with x1x2x3 6= 0; conversely, a solution
(x1 : x2 : x3) ∈ P3(Q) of (3.4) with x1x2x3 6= 0 gives rise to a solution (x1 : x2 : x3 : x4) ∈ P3(Q) of the
system of equations (3.1) with x4 being determined by (3.3) and such that x1x2x3x4 6= 0. This confirms
indeed that the solutions (jk)1≤k≤4 ∈ Z4

0 of the system of equations (2.14) correspond to the points on the
curve C having non-zero rational coordinates.

Mathematica allows us to fully expand equation (3.4), which leads to the following homogeneous
polynomial equation of degree 9 describing the curve C in P2(C)

x6
1x

3
2 + 3x6

1x
2
2x3 + 3x6

1x2x
2
3 + x6

1x
3
3 + 3x5

1x
3
2x3 + 6x5

1x
2
2x

2
3 + 3x5

1x2x
3
3

+ 3x4
1x

3
2x

2
3 + 3x4

1x
2
2x

3
3 + x3

1x
6
2 + 3x3

1x
5
2x3 + 3x3

1x
4
2x

2
3 + 2x3

1x
3
2x

3
3

+ 3x3
1x

2
2x

4
3 + 3x3

1x2x
5
3 + x3

1x
6
3 + 3x2

1x
6
2x3 + 6x2

1x
5
2x

2
3 + 3x2

1x
4
2x

3
3

+ 3x2
1x

3
2x

4
3 + 6x2

1x
2
2x

5
3 + 3x2

1x2x
6
3 + 3x1x

6
2x

2
3 + 3x1x

5
2x

3
3 + 3x1x

3
2x

5
3

+ 3x1x
2
2x

6
3 + x6

2x
3
3 + x3

2x
6
3 = 0. (3.5)
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Applying the Mathematica command Factor to the polynomial given in equation (3.5), we obtain the
factorization into irreducible polynomials

(x1 + x2)(x1 + x3)(x2 + x3)f(x1, x2, x3) = 0,

where f(x1, x2, x3) is the irreducible homogeneous polynomial of degree 6 given by

f(x1, x2, x3) := x4
1x

2
2 + 2x4

1x2x3 + x4
1x

2
3 − x3

1x
3
2 − x3

1x
3
3 + x2

1x
4
2 + x2

1x
2
2x

2
3

+ x2
1x

4
3 + 2x1x

4
2x3 + 2x1x2x

4
3 + x4

2x
2
3 − x3

2x
3
3 + x2

2x
4
3. (3.6)

Geometrically, this factorization implies that the curve C is reducible and consists of four irreducible com-
ponents, three of which are given by the projective lines

xk + xl = 0, ∀ 1 ≤ k, l ≤ 3, (3.7)

while the fourth irreducible component is an irreducible curve C ′ of degree 6 in P2(C), described by the
polynomial equation

f(x1, x2, x3) = 0. (3.8)

Since the points on the projective lines (3.7) give rise to the trivial solutions (3.2), namely

(x1 : −x1 : x3), (x1 : x2 : −x1), (x1 : x2 : −x2),

which are not of interest to us, it remains to investigate the rational solutions of equation (3.8), i.e., the
rational points on the curve C ′. The curve C ′ has the obvious three rational points

P1 = (1 : 0 : 0), P2 = (0 : 1 : 0), P3 = (0 : 0 : 1),

which in the end will not be relevant in our further discussion, since some of their coordinates vanish.
We next consider the affine curve C ′aff in the affine x1, x2-plane obtained from C ′ by dehomogenization,

i.e., by setting x3 = 1. In order to ease notation for the subsequent calculations, we set x = x1 and y = x2.
Thus, C ′aff is given by the equation faff(x, y) = 0, where

faff(x, y) := f(x, y, 1)

= x4y2 − x3y3 + x2y4 + 2x4y + 2xy4 + x4 + x2y2 + y4 − x3 − y3 + x2 + 2xy + y2.

In this affine picture, the points P1 and P2 are the two points at infinity of the curve C ′aff and the point P3

reflects that the curve C ′aff contains the origin of the x, y-plane. We now claim that the only real point on
the affine curve C ′aff is the origin, which in turn shows that the only real points on the projective curve C ′

are the points P1, P2, P3.
In order to show this, we observe that we can make the implicit equation faff(x, y) = 0 explicit by

considering it as a polynomial equation of degree four in y and then solve it using Ferrari’s formulae.
Defining the quantities

A(x) :=
x2 − x+ 1

4(x+ 1)
,

B(x) := −3(x4 + 2x3 − x2 + 2x+ 1)

4(x+ 1)2
,

C(x) := −x
4 + x2 + 1

2(x+ 1)2
,

D(x) := −3(x2 + 3x+ 1)2(x2 − x+ 1)

(x+ 1)3
,

9



Mathematica provides the following four solutions (branches),

y1,2(x) = A(x)− 1

2

√
B(x)± 1

2

√
C(x)− D(x)

4
√
B(x)

,

y3,4(x) = A(x) +
1

2

√
B(x)± 1

2

√
C(x) +

D(x)

4
√
B(x)

.

One easily checks that for real x, the rational function B(x) has a pole at x = −1 and possesses the two real
zeros

x1 =
−3−

√
5

2
= −2.61803 . . . , x2 =

−3 +
√

5

2
= −0.38196 . . . ,

from which we conclude that for x < x1 and for x > x2, the quantity B(x) is negative and thus
√
B(x) is

purely imaginary. More specifically, a careful analysis (either using Mathematica or a direct inspection
by hand) shows that for x < x1 and x > x2, the solutions yj(x) with 1 ≤ j ≤ 4 are always purely complex
unless x = 0, which leads to

y2(0) = y3(0) = 0, y1(0) =
1−
√
−3

2
, y4(0) =

1 +
√
−3

2
,

and shows that for x < x1 and x > x2, the origin (x, y) = (0, 0) of the affine x, y-plane is the only real point
on C ′aff . As an example, we present the plots of the imaginary part of y1(x) for −6 < x < x1 and of the
imaginary part of y4(x) for x2 < x < 5; similar plots can be obtained for the imaginary parts of y2(x) and
y3(x) in the range under consideration:

In[1]:= a := (x^2 - x + 1) / (4 * (x + 1))

In[2]:= b := -3 * (x^4 + 2 * x^3 - x^2 + 2 * x + 1) / (4 * (x + 1)^2)

In[3]:= c := -(x^4 + x^2 + 1) / (2 * (x + 1)^2)

In[4]:= d := -3 * ((x^2 + 3 * x + 1)^2) * (x^2 - x + 1) / ((x + 1)^3)

In[11]:=
stell⋯
Plot[

Imaginärteil
Im[-1 / 2 *

Quadratwurzel
Sqrt[b] + 1 / 2 *

Quadratwurzel
Sqrt[c - d / (4 *

Quadratwurzel
Sqrt[b])]], {x, -6, -2.618}]

Out[11]=

-6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0

0.4

0.6

0.8

1.0

1.2

1.4

1.6

In[1]:= a := (x^2 - x + 1) / (4 * (x + 1))

In[2]:= b := -3 * (x^4 + 2 * x^3 - x^2 + 2 * x + 1) / (4 * (x + 1)^2)

In[3]:= c := -(x^4 + x^2 + 1) / (2 * (x + 1)^2)

In[4]:= d := -3 * ((x^2 + 3 * x + 1)^2) * (x^2 - x + 1) / ((x + 1)^3)

In[8]:=
stell⋯
Plot[

Imaginärteil
Im[1 / 2 *

Quadratwurzel
Sqrt[b] - 1 / 2 *

Quadratwurzel
Sqrt[c + d / (4 *

Quadratwurzel
Sqrt[b])]], {x, -0.381, 5}]

Out[8]=

1 2 3 4 5

-0.15

-0.10

-0.05

For x1 ≤ x ≤ x2 with x 6= −1, the quantities A(x)±
√
B(x)/2 are real, however the functions

C(x)± D(x)

4
√
B(x)

are strictly negative, as the following two plots show:
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In[1]:= a := (x^2 - x + 1) / (4 * (x + 1))

In[2]:= b := -3 * (x^4 + 2 * x^3 - x^2 + 2 * x + 1) / (4 * (x + 1)^2)

In[3]:= c := -(x^4 + x^2 + 1) / (2 * (x + 1)^2)

In[4]:= d := -3 * ((x^2 + 3 * x + 1)^2) * (x^2 - x + 1) / ((x + 1)^3)

In[9]:=
stelle Funktion grap⋯
Plot[c + d / (4 *

Quadratwurzel
Sqrt[b]), {x, -2.618, -0.381}]

Out[9]=

-2.5 -2.0 -1.5 -1.0 -0.5

-15

-10

-5

In[1]:= a := (x^2 - x + 1) / (4 * (x + 1))

In[2]:= b := -3 * (x^4 + 2 * x^3 - x^2 + 2 * x + 1) / (4 * (x + 1)^2)

In[3]:= c := -(x^4 + x^2 + 1) / (2 * (x + 1)^2)

In[4]:= d := -3 * ((x^2 + 3 * x + 1)^2) * (x^2 - x + 1) / ((x + 1)^3)

In[10]:=
stelle Funktion grap⋯
Plot[c - d / (4 *

Quadratwurzel
Sqrt[b]), {x, -2.618, -0.381}]

Out[10]=

-2.5 -2.0 -1.5 -1.0 -0.5

-80

-60

-40

-20

Therefore, the solutions yj(x) with 1 ≤ j ≤ 4 are strictly complex and cannot be real. In case x = −1, we
find the two solutions y1,2 = ±i. Altogether, this shows that the origin (x, y) = (0, 0) of the affine x, y-plane
is the only real point on the curve C ′aff .

This allows us to conclude the proof of the theorem: we have shown that the only non-trivial rational
points on the curve C are the points P1, P2, P3. However, since some of their coordinates vanish, these points
have to be ignored. Thus, by our introductory reformulations, it follows that the system of equations (2.14)
has no solutions (jk)1≤k≤4 ∈ Z4

0 satisfying (2.15).

Remark 3.1. In the preceding proof of Theorem 2.3, the crucial point was to show that the irreducible
curve C ′ in P2(C), defined by the equation

f(x1, x2, x3) = 0,

where f(x1, x2, x3) is the irreducible homogeneous polynomial of degree 6 given by (3.6), has

P1 = (1 : 0 : 0), P2 = (0 : 1 : 0), P3 = (0 : 0 : 1)

as its only rational points. In order to approach such a claim in general, one shows in a first step that
the curve C ′, which is defined over Q, has only finitely many rational points. Such a finiteness result then
implies that the system (2.14) has only finitely many primitive solutions (jk)1≤k≤4 ∈ Z4

0 satisfying (2.15),
by which we mean solutions (jk)1≤k≤4 ∈ Z4

0 with greatest common divisor equal to 1.
In order to prove the finiteness of the set of rational points on the curve C ′, one is tempted to employ

Faltings’s Theorem (formerly the Mordell Conjecture, see [21]), which states that this set is indeed finite
if the genus gC′ of C ′ is bigger than 1. (For an elementary introduction to this circle of problems, we
refer to Appendix C in [30] and the references therein.) Hence, we need to compute the genus gC′ , which
requires to determine the singular points of C ′. Either by a direct computation or alternatively using the
command singularities(f, x1, x2, x3) of the software package with(algcurves) of Maple, one concludes that
the three singular points are the points P1, P2, P3 mentioned above, having the following multiplicities and
delta-invariants

m1 = 2 and δ1 = 2,

m2 = 2 and δ2 = 2,

m3 = 2 and δ3 = 2,

respectively. We note that the delta-invariants being bigger than 1 implies that the singularities in question
are not ordinary. With these data at hand, the genus gC′ of the curve C ′ of degree d = 6 is given by

gC′ =
(d− 1)(d− 2)

2
−

3∑
j=1

δj =
5 · 4

2
− (2 + 2 + 2) = 4.
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The normalization C̃ ′ of the curve C ′ is then an irreducible, smooth, projective curve of genus g
C̃′ = 4. The

normalization C̃ ′ admits a surjective morphism π : C̃ ′ −→ C ′, which is an isomorphism away from the three
singular points, i.e., we have

C̃ ′ \ π−1({P1, P2, P3}) ∼= C ′ \ {P1, P2, P3}, (3.9)

and for any 1 ≤ j ≤ 3, the fiber π−1(Pj) over the singular point Pj consists of finitely many points. Finally,

since the curve C ′ is defined over Q, its normalization C̃ ′ is also defined over Q.
In summary, C̃ ′ is an irreducible, smooth, projective curve of genus g

C̃′ = 4, which is moreover defined over

Q. By Faltings’s Theorem we then conclude that C̃ ′ has only finitely many rational points. Because of the
isomorphism (3.9) and the fact that the fibers over the three singular points are finite, the curve C ′ also has
only finitely many rational points. This concludes our remark demonstrating that our main result can be
reduced to a finite problem in quite general terms.

Let us now turn to the promised discussion of Question 2.1.

Discussion of Question 2.1. In analogy to the proof of Theorem 2.3, in order to approach Question 2.1, we
introduce the homogeneous coordinates (x1 : x2 : x3 : x4 : x5) in projective space P4(C) and first investigate
the algebraic geometric objects defined by the system of equations

5∑
k=1

x3
k = 0,

5∑
k=1

xk = 0,

5∑
k=1

1

xk
= 0. (3.10)

The first equation of (3.10) defines a cubic threefold T1, the second equation of (3.10) defines a hyperplane
T2, while the third equation of (3.10) defines a quartic threefold T3 in P4(C), given by the homogeneous
polynomial equation of degree 4,

x1x2x3x4 + x1x2x3x5 + x1x2x4x5 + x1x3x4x5 + x2x3x4x5 = 0.

We are interested in the locus given by the intersection of the three threefolds Tj (1 ≤ j ≤ 3) in P4(C).
Intersecting the cubic threefold T1 with the hyperplane T2, leads to the irreducible cubic surface S1 in

P3(C), given by the equation

x3
1 + x3

2 + x3
3 + x3

4 − (x1 + x2 + x3 + x4)3 = 0,

and known as the Clebsch cubic surface. The set of rational points on S1 turns out be infinite; it will be
discussed in more detail in Section 4. On the other hand, intersecting the hyperplane T2 with the quartic
threefold T3 gives rise to the irreducible quartic surface S2 in P3(C), given by the equation

x1x2x3x4 − (x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4)(x1 + x2 + x3 + x4) = 0,

and known as the Hessian surface. We do not know if the set of rational points on S2 is infinite, however
it is likely that this indeed the case since the resolution of the singularities of S2 leads to a K3-surface (see
Section 9.4.2 in [16]) which is, of course, not of general type and thus might allow infinitely many rational
points projecting down to S2.

Ultimately, we are interested in the set of rational points on the intersection T1 ∩ T2 ∩ T3 = S1 ∩ S2,
which is a curve D of degree 12 in P3(C) defined over Q. Using the algebraic geometry software package
Macaulay, it can be shown that the curve D is irreducible and has genus 19. Arguing as in Remark 3.1
above, it then follows again from Faltings’s Theorem that the system of equations (2.20) can have at most
finitely many primitive solutions (jk)1≤k≤5 ∈ Z5

0 satisfying (2.21). To fully answer Question 2.1, it thus
remains to show that for any primitive solution (jk)1≤k≤5 ∈ Z5, there is always an index k ∈ {1, . . . , 5} such
that jk = 0, which then implies that the remaining four indices can be grouped into two pairs of indices
(l, l′) and (m,m′) such that jl + jl′ = 0 and jm + jm′ = 0. It is likely that this can be proved, however this
seems not to be an easy task.
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4 On cubic diophantine equations

The aim of this section is to give a broad overview about results on the set of rational solutions of cubic
equations which are relevant in the context of the KdV frequencies. We start with a discussion of results
on the set of rational points on Fermat’s cubic in 3, 4, and 5 variables and then proceed by adding to the
equation of Fermat’s cubic a linear and, subsequently, a fractional constraint. For each of these systems of
equations, we study the set of common rational solutions.

4.1 The Fermat cubic in several variables

We start by considering the Fermat cubic curve in P2(C), given by

F3 : x3
1 + x3

2 + x3
3 = 0.

We are interested in the set of rational points of F3, which do not lie on the lines in P2(C), defined by

xk + xl = 0, ∀ 1 ≤ k, l ≤ 3. (4.1)

As Fermat’s Last Theorem tells us, there are no such rational points on F3.
Next, we consider the Fermat cubic surface in P3(C), given by

F4 : x3
1 + x3

2 + x3
3 + x3

4 = 0.

We are interested in the set of rational points of F4, which do not lie on the planes in P3(C), defined by

xk + xl = 0, ∀ 1 ≤ k, l ≤ 4. (4.2)

In contrast to the preceding case, it turns out that there are infinitely many such rational points on F4.
In fact, the set of such rational points can be shown to be Zariski dense in F4(Q). In the next subsection,
we will indicate how such rational points can be constructed. More generally, there is a parametrization of
them, given by N. Elkies in [18]. As an aside, we remark that this problem is related to the question of
representing an integer in two different ways as a sum of two cubes, the celebrated “cab number problem”,
e.g.,

13 + 123 + (−9)3 + (−10)3 = 0.

Finally, turning to 5 variables, we consider the Fermat cubic threefold in P4(C), given by

F5 : x3
1 + x3

2 + x3
3 + x3

4 + x3
5 = 0.

We are interested in the set of rational points of F5, which do not lie on the hyperplanes in P4(C), defined
by

xk + xl = 0, ∀ 1 ≤ k, l ≤ 5. (4.3)

Given our preceding discussion, it is not surprising that there is an infinitude of such rational points on F5.
As an example, we mention

53 + 73 + 93 + 103 + (−13)3 = 0.

4.2 The Fermat cubics with a linear constraint

First consider the system of equations in P2(C), given by

F3 : x3
1 + x3

2 + x3
3 = 0, L3 : x1 + x2 + x3 = 0.

We are interested in the set of rational points of F3 ∩L3, which do not lie on the lines (4.1). Since there are
no rational points on F3 away from the lines (4.1), we have that F3(Q) ∩ L3(Q) = ∅.
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Next, we consider the system of equations in P3(C), given by

F4 : x3
1 + x3

2 + x3
3 + x3

4 = 0, L4 : x1 + x2 + x3 + x4 = 0.

We are interested in the set of rational points of F4 ∩ L4, which do not lie on the planes (4.2). It turns out
that F4(Q) ∩ L4(Q) = ∅, as discussed on the top of page 7.

Continuing in this way, we next consider the system of equations in P4(C), given by

F5 : x3
1 + x3

2 + x3
3 + x3

4 + x3
5 = 0, L5 : x1 + x2 + x3 + x4 + x5 = 0.

We are interested in the set of rational points of F5 ∩ L5, which do not lie on the hyperplanes (4.3). The
intersection F5 ∩ L5 is known as the Clebsch cubic surface S, for which we know that there are infinitely
many rational points on F5∩L5 away from the hyperplanes (4.3). In fact, it is known that the set of rational
points on F5 ∩ L5 is Zariski dense.

Let us sketch how such rational points can be systematically computed on S: Using the relation x5 =
−x1−x2−x3−x4, the Clebsch cubic surface S can be described equivalently as the cubic surface in P3(C),
given by the equation

x3
1 + x3

2 + x3
3 + x3

4 − (x1 + x2 + x3 + x4)3 = 0.

Given a non-zero rational number a, the Clebsch cubic surface S obviously contains the rational point
P = (−a, a, 1,−1) ∈ S(Q). The aim now is to construct further rational points on S, starting with the
rational point P . For this, we first construct the tangent plane T of S at the point P , which is easily
computed as

T : a2x1 + a2x2 + x3 + x4 = 0.

Next, we compute the intersection of the Clebsch cubic surface S with the tangent plane T , which leads to
the cubic curve

C : x3
1 + x3

2 + x3
3 − (a2x1 + a2x2 + x3)3 − ((1− a2)x1 + (1− a2)x2)3 = 0. (4.4)

By construction, the cubic curve C contains the line given by x1 + x2 = 0. Hence the left-hand side of (4.4)
has to be divisible by (x1 + x2). Performing this polynomial division leads to the quadric

Q : x1x2 + a2(a2 − 1)(x1 + x2)2 + a4(x1 + x2)x3 + a2x2
3 = 0.

Obviously, the point P is also a rational point on the quadric Q. Therefore, we obtain all the rational points
P ′ on Q, by intersecting Q with any line L passing through P and having rational slope, i.e., by intersecting
Q with

L : b(x1 + ax3)− c(x2 − ax3) = 0,

where (b, c) ∈ Q2 \ {(0, 0)}. Since the quadric Q is by construction contained in the Clebsch cubic surface S,
by varying the pair (b, c) through Q2\{(0, 0)}, one obtains infinitely many rational points P ′ on S. Assuming
that b 6= 0, a straightforward computation yields the following coordinates for P ′ ∈ S(Q):

x1,P ′ = − a

b2
(
a2(a2 − 1)(b+ c)2 + a3c(b+ c) + c2

)
,

x2,P ′ =
a

b2
(
a2(a2 − 1)(b+ c)2 − a3b(b+ c) + b2

)
,

x3,P ′ =
1

b2
(
a2(a2 − 1)(b+ c)2 + bc

)
,

x4,P ′ =
1

b2
(
a4(a2 − 1)(b+ c)2 + a2(b+ c)(−ab+ ac+ b+ c)− bc

)
,

x5,P ′ = − 1

b2
(
a4(a2 − 1)(b+ c)2 − a(a2 − 1)(b2 − c2)

)
.
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We can simplify the above formulas by multiplying them by b2/a and then setting b = 1 to obtain

x1 = −a2(a2 − 1)(c+ 1)2 − a3c(c+ 1)− c2,

x2 = a2(a2 − 1)(c+ 1)2 − a3(c+ 1) + 1,

x3 = a(a2 − 1)(c+ 1)2 + c/a,

x4 = a3(a2 − 1)(c+ 1)2 + a(c+ 1)(ac− a+ c+ 1)− c/a,

x5 = −a3(a2 − 1)(c+ 1)2 − (a2 − 1)(c2 − 1).

Finally, choosing for example a = 2 and c = 0, we arrive at

x1 = −12, x2 = 5, x3 = 6, x4 = 22, x5 = −21,

which constitutes indeed a non-trivial rational point on the Clebsch cubic surface S.

4.3 The Fermat cubics with a fractional constraint

Consider the system of equations in P2(C), given by

F3 : x3
1 + x3

2 + x3
3 = 0, R3 :

1

x1
+

1

x2
+

1

x3
= 0.

We are interested in the set of rational points of F3 ∩R3, which do not lie on the lines (4.1). Since there are
no rational points on F3 away from the lines (4.1), we have that F3(Q) ∩R3(Q) = ∅.

Next, we consider the system of equations in P3(C), given by

F4 : x3
1 + x3

2 + x3
3 + x3

4 = 0, R4 :
1

x1
+

1

x2
+

1

x3
+

1

x4
= 0.

We are interested in the set of rational points of F4 ∩R4, which do not lie on the planes (4.2). Theorem 2.3
shows that there are no such rational points.

Continuing in this way, we next consider the system of equations in P4(C), given by

F5 : x3
1 + x3

2 + x3
3 + x3

4 + x3
5 = 0, R5 :

1

x1
+

1

x2
+

1

x3
+

1

x4
+

1

x5
= 0.

We are interested in the set of rational points of F5 ∩ R5, which do not lie on the hyperplanes (4.3). In
analogy to the linear equation, one expects that there are such rational points. However, we have not studied
this problem.

Remark 4.1. The preceding three subsections lead to the following pattern: In the case of three variables,
the Fermat cubic F3 has no rational points away from the lines (4.1). Increasing the number of variables
by one, we find that the Fermat cubic F4 subject to the additional constraint L4 or R4 has no rational
points away from the planes (4.2). Continuing and increasing the number of variables again by one, we end
up with the conjecture that the Fermat cubic F5 subject to the two constraints L5 and R5 has no rational
points away from the hyperplanes (4.3). Therefore, it is to be expected that the Fermat cubic Fn in n > 5
variables subject to the constraints Ln and Rn will always have infinitely many rational points away from
the hyperplanes xk + xl = 0 for 0 ≤ k, l ≤ n.
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A Asymptotic expansion of KdV frequencies

In this appendix we prove Remark 2.1, stating that the coefficient α in the expansion of the normal frequencies
Ωj does not vanish identically. First we note that, when viewed as a function of the potential q, it is
straightforward to show that the coefficient α analytically extends to the closure MS of MS (cf. Definition
2.1), consisting of potentials q ∈ L2

0, satisfying

wn(q) = 0 , ∀n ∈ S⊥ .

Note that the zero potential is in MS as well as any potential q ∈ L2
0, for which there exists k ∈ S+, so that

wn(q) = 0 for any n ≥ 1 with n 6= k. We now compute α for such potentials. Without further reference, we
use the notation introduced in [27]. According to [27, Theorem F.4 and Remark 2],

Ωj = 8jπ(τj − rj) , rj =
∑
m≥1

(σjm − λ̇m) .

(For notational convenience, σjj is defined as σjj := τj (cf. [27, (D.1) page 212]).) For a one gap potential q

as above, σjm = λ̇m (= τm) for any m ≥ 1 with m 6= k. Hence

Ωj = 8jπτj + 8jπ(λ̇k − σjk) .

We need to compute

α = lim
j→∞

j(Ωj − 8j3π3) = lim
j→∞

j
(
8jπτj − 8j3π3 + 8jπ(λ̇k − σjk)

)
. (A.1)

It is well known that τj admits the asymptotic expansion (cf. e.g. Theorem 1.3, Theorem 1.4 in [28] and
[37, page 39]),

τj = j2π2 + c2
1

j2π2
+O(

1

j4
) , c2 =

1

4

∫ 1

0

q(x)2dx , (A.2)

implying that

8jπτj − 8j3π3 = 8c2
1

jπ
+O(

1

j3
) .

It thus follows that

lim
j→∞

j(8jπτj − 8j3π3) =
8

π
c2 =

2

π

∫ 1

0

q(x)2dx . (A.3)

It remains to compute
lim
j→∞

j · 8jπ(λ̇k − σjk).

Following [27, Section D], one sees that for j > k, the contour integral in the identity 1
2π

∫
Γj

ψj(λ)
c
√

∆(λ)2−4
dλ = 1

can be computed by Cauchy’s theorem, yielding jπ
+
√
τj−λ0

τj−σjk
+
√

(τj−τk)2−γ2
k/4

= 1, or

τj − σjk =
+
√
τj − λ0

jπ
+

√
(τj − τk)2 − γ2

k/4 . (A.4)

According to [27, page 229, Remark 2], τk − λ̇k = −λ0/2. Hence the left hand side of (A.4) can be written
as

τj − σjk = (τj − τk)− λ0/2 + (λ̇k − σjk). (A.5)

Using the Taylor expansion +
√

1 + x = 1 + 1
2x−

1
8x

2 +O(x3) and (A.2), the right hand side of (A.4) can be
expanded as

+
√
τj − λ0 = jπ − λ0

2

1

jπ
+ (

c2
2
− λ2

0

8
)

1

j3π3
+O(

1

j5
) ,
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+

√
(τj − τk)2 − γ2

k/4 = (τj − τk)− γ2
k

8

1

τj − τk
+O(

1

j6
) ,

yielding

+
√
τj − λ0

jπ
+

√
(τj − τk)2 − γ2

k/4 =
(

1− λ0

2

1

j2π2
+ (

c2
2
− λ2

0

8
)

1

j4π4

)(
(τj − τk)− γ2

k

8

1

τj − τk

)
+O(

1

j4
)

= (τj − τk)− λ0

2

τj − τk
j2π2

+ (
c2
2
− λ2

0

8
)
τj − τk
j4π4

− γ2
k

8

1

τj − τk
+O(

1

j4
) .

Using that
τj−τk
j2π2 = 1− τk

j2π2 +O( 1
j4 ), we finally get

+
√
τj − λ0

jπ
+

√
(τj − τk)2 − γ2

k/4 = (τj − τk)− λ0

2
+ (

λ0

2
τk +

c2
2
− λ2

0

8
− γ2

k

8
)

1

j2π2
+O(

1

j4
). (A.6)

Combining (A.5) and (A.6), we obtain

lim
j→∞

8

π
j2π2(λ̇k − σjk) =

8

π
(
λ0

2
τk +

c2
2
− λ2

0

8
− γ2

k

8
),

which together with (A.1) and (A.3) then yields for any q ∈MS with wn(q) = 0 for any n 6= k,

α =
8

π
(
λ0

2
τk +

3c2
2
− λ2

0

8
− γ2

k

8
).

It remains to remark that the L2-gradient of α at q = 0 does not vanish. Indeed, since λ0|q=0 = 0,
τk|q=0 = k2π2, ∇λ0|q=0 = f2

0 |q=0 ≡ 1, and ∇c2|q=0 = 0, one has

∇(
λ0

2
τk +

3c2
2
− λ2

0

8
− γ2

k

8
)|q=0 =

τk
2
∇λ0|q=0 −

1

π
∇γ2

k|q=0 =
k2π2

2
, (A.7)

where for the latter identity we used that ∇γ2
k|q=0 = 0. To see that ∇γ2

k|q=0 vanishes, first note that by [27,
Theorem 7.3], γ2

k = 1
ξ2k

8Ik and 1
ξ2k
|q=0 = kπ. By [27, Theorem 7.3] and the fact that ∇∆(λ, ·)|q=0 ≡ 0 (cf.

[27, Proposition B.3]), it then follows that ∇Ik|q=0 = 0 and hence ∇γ2
k = kπ∇Ik = 0.

The computation (A.7) shows that α does not vanish identically.
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