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Abstract

Let Γ ( Spn(R) be an arithmetic subgroup of the symplectic group Spn(R) acting on the Siegel
upper half-space Hn of degree n. Consider the d-dimensional space of Siegel cusp forms Sn

κ (Γ) of
weight κ for Γ and let {fj}1≤j≤d be a basis of Sn

κ (Γ) orthonormal with respect to the Petersson inner
product. In this paper we show using the heat kernel method that the sup-norm of the quantity
SΓ

κ (Z) :=
∑d

j=1
det(Y )κ|fj(Z)|2 (Z ∈ Hn) is bounded above by cn,Γκn(n+1)/2 when M := Γ\Hn is

compact and by cn,Γκ3n(n+1)/4 when M is non-compact of finite volume, where cn,Γ denotes a positive
real constant depending only on the degree n and the group Γ. Furthermore, we show that this bound
is uniform in the sense that if we fix a group Γ0 and take Γ to be a subgroup of Γ0 of finite index,
then the constant cn,Γ in these bounds depends only on the degree n and the fixed group Γ0.

1 Introduction

Obtaining sup-norm bounds ‖ϕ‖∞ of eigenfunctions ϕ satisfying ∆Xϕ+λφ = 0 for the Laplace–Beltrami
operator ∆X on a Riemannian manifold X in terms of the eigenvalue λ is a classical problem in spectral
theory, for which local estimates exist [21, 34] that are essentially sharp in this level of generality. In
arithmetic setting, these estimates are expected to be improved drastically[33, 32]. Although major
improvements over the classical general estimates have been obtained in such setting [23], we are still far
from the conjectured bound

‖ϕ‖∞ ≪ǫ λ
ǫ (ǫ > 0) (1.1)

for Hecke eigenforms. However, more interestingly, in this arithmetic setting, the sup-norm bound prob-
lem has been shown to have important connections to various fundamental queries in number theory such
as the Lindelöf hypothesis for the Riemann zeta function [32], quantum ergodicity and entropy bounds
[6], the subconvexity problem for L-functions [17], distribution of zeros of modular forms [16] and the
study of Arakelov invariants of arithmetic surfaces [1, 24, 29]. This has created a sustained interest in
the sup-norm bound problem in various number-theoretic aspects, one of which we address in this paper.

Although we are far from obtaining (1.1) for individual eigenforms, in the special setting of holo-
morphic cusp forms, in [11], optimal bounds have been obtained on average over an orthonormal basis,
without the assumption of strong arithmetic symmetries such as Hecke structure on the eigenforms. As
this setup has a ready generalization in the case of Siegel modular forms, where the sup-norm bound has
also recently been of some interest[4, 5, 7, 8], we attempt here to extend this method and the results
obtained in [11] to the case of the Siegel upper half-space, which works to a large extent along with some
significant non-trivialities that need special tools from the theory of harmonic analysis of semisimple Lie
groups to get around.

1.1 Sup-norm bounds on H

Let H := {z = x + iy | y > 0} denote the upper half-plane and Γ ( SL2(R) denote a Fuchsian subgroup
of the first kind. Let Vκ(Γ) denote the space of real analytic functions ϕ : H → C with the transformation
behaviour

ϕ(γz) =

(
cz + d

cz + d

)κ/2

ϕ(z)

(
γ =

(
a b
c d

)
∈ Γ

)
. (1.2)
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For ϕ ∈ Vκ(Γ), we set

‖ϕ‖2 :=

ˆ

Γ\H

|ϕ(z)|2 dx ∧ dy

y2
,

whenever it is defined. Let Hκ(Γ) := {ϕ ∈ Vκ(Γ) | ‖ϕ‖ < ∞} denote the Hilbert space of square
integrable functions in Vκ(Γ), equipped with the Petersson inner product. Let ∆(κ) denote the Maaß
Laplacian invariant with respect to the action of Γ on ϕ in (1.2). Then the operator ∆(κ) acts on the
smooth functions of Hκ(Γ) and extends to an essentially self-adjoint linear operator acting on a dense
subspace of Hκ(Γ).

The eigenvalues for the Laplace equation (∆(κ) + λ)ϕ = 0 satisfy λ ≥ κ/2(1 − κ/2) and in case λ =
κ/2(1−κ/2), the corresponding eigenfunction ϕ in Hκ(Γ) can be shown to be of the form ϕ(z) = yκ/2f(z)
with f ∈ Sκ(Γ), where Sκ(Γ) denotes the space of holomorphic cusp forms of weight κ with respect to Γ.

Let d = dim(Sκ(Γ)) be the dimension of the space Sκ(Γ) and consider a basis {fj}1≤j≤d of Sκ(Γ)
orthonormal with respect to the Petersson inner product. Then, in order to obtain a sup-norm bound
for the quantity

SΓ
κ (z) :=

d∑

j=1

yκ|fj(z)|2 (z ∈ H)

in the weight aspect, using the spectral decomposition of the weight-κ heat kernel K
(κ,Γ)
t and the C-vector

space isomorphism

Sκ(Γ) ∼= ker

(
∆(κ) +

κ

2

(
1 − κ

2

)
id

)
(1.3)

induced by the assignment f 7→ yκ/2f , one arrives at the important relation

SΓ
κ (z) = lim

t→∞
exp

(
− κ

2

(
κ

2
− 1

)
t

)
K

(κ,Γ)
t (z, z) (κ ≥ 2), (1.4)

whence analyzing the heat kernel K
(κ,Γ)
t , in [11] it is shown that

sup
z∈H

SΓ
κ (z) ≤

{
cΓ κ (M compact),

cΓ κ
3/2 (M non-compact of finite volume),

where cΓ > 0 is a positive real number depending only on Γ. Furthermore, it is shown that this bound
is uniform in the sense that if we fix a group Γ0 ( SL2(R) and take Γ to be a subgroup of Γ0 of finite
index, then the constant cΓ in these bounds depends only on the fixed group Γ0.

1.2 Sup-norm bounds on H
n

Let Hn := {Z = X + iY ∈ Cn×n |X,Y ∈ Symn(R) : Y > 0} denote the Siegel upper half-space of degree
n and Γ ( Spn(R) be an arithmetic subgroup of the symplectic group Spn(R). Let Sn

κ (Γ) denote the
space of all Siegel cusp forms of weight κ. Let d = dim(Sn

κ (Γ)) be the dimension of the space Sn
κ (Γ) and

{fj}1≤j≤d be an orthonormal basis of Sn
κ (Γ) with respect to the Petersson inner product. We denote

SΓ
κ (Z) :=

d∑

j=1

det(Y )κ|fj(Z)|2 (Z ∈ Hn).

In [7], for Γ = Γn = Spn(Z), an asymptotic analysis of the Bergman kernel shows the bound

sup
Z∈K

SΓ
κ (Z) ≍n κ

n(n+1)/2 (κ > 2n) (1.5)

in the weight aspect, where K ( Fn is any fixed compact subset of the standard fundamental domain
Fn of Hn for Γn.
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In case of individual forms, on the basis of upper and lower bounds for certain specific kinds of Siegel
cusp forms F ∈ Sn

κ (Γ), namely those coming from elliptic modular forms f ∈ Sκ(Γ) via Ikeda lifts, in the
weight aspect, for L2-normalized Siegel Hecke cusp forms F for Γn of (large) weight κ and (fixed) genus
n, Blomer in [4] conjectures

sup
Z∈Hn

det(Y )κ|F (Z)|2 ≍n κ
n(n+1)/4.

Combining this conjecture with Hashimoto’s result [19]

dimC Sn
κ (Γ) = 2n(n−1)/2 vol

(
Γ\Hn

)

(4π)n(n+1)/2
κn(n+1)/2 +O(κn(n+1)/2−1),

for SΓ
κ (Z) one conjectures

sup
Z∈Hn

SΓ
κ (Z) = OΓ(κ3n(n+1)/4). (1.6)

Recently, in [8] it has been shown that

κ3n(n+1)/4

κ3n(n+1)/4

κ3n(n+1)/4





≪n sup
Z∈Hn

SΓn
κ (Z) ≪n,ǫ





κ3n(n+1)/4 (n = 1)
κ3n(n+1)/4+ǫ (n = 2)

κ(5n−3)(n+1)/4+ǫ (n ≥ 3)

,

which establishes (1.6) for n = 1 and n = 2, but moves away from the optimal upper bound for n > 2.

1.3 Statement of results

The main result of this paper is the following theorem, which establishes the conjecture (1.6) for n ≥ 2 by

relating SΓ
κ (Z) with the heat kernel K

(κ,Γ)
t corresponding to the Siegel–Maaß Laplacian ∆(κ) on Γ\Hn.

Theorem 1.1. Let Γ ( Spn(R) be an arithmetic subgroup and Sn
κ (Γ) denote the space of Siegel cusp

forms of weight κ on Hn with respect to Γ. Let {fj}1≤j≤d be a basis of Sn
κ (Γ) orthonormal with respect

to the Petersson inner product. Then, for all n ≥ 2, we have

sup
Z∈Hn

d∑

j=1

det(Y )κ|fj(Z)|2 ≤
{
cn,Γ κ

n(n+1)/2 (Γ cocompact),

cn,Γ κ
3n(n+1)/4 (Γ cofinite),

(κ ≥ n+ 1)

where cn,Γ > 0 is a positive real number depending only on the degree n of Hn and the group Γ.

Furthermore, this bound is uniform in the sense that if we fix a group Γ0 ( Spn(R) and take Γ to be
a subgroup of Γ0 of finite index, then the constant cn,Γ in these bounds depends only on the degree n and
the fixed group Γ0.

This generalizes the theorems 4.2, 5.2, and 6.1 in [11]. Furthermore, as κ ≥ n+1, essentially the same
arguments generalize the theorem 3.1 in [25] to obtain for an orthonormal basis {fj}1≤j≤d of Sn

n+1(Γ)
and a positive real number cn,Γ0 > 0 depending only on n and a fixed base space M0 := Γ0\Hn, the
estimate

dµB(Z)

dµS(Z)
= sup

Z∈Hn

d∑

j=1

det(Y )n+1|fj(Z)|2 ≤ cn,Γ0 ,

where dµB denotes the volume form of the Bergman metric

dµB(Z) :=

d∑

j=1

|fj(Z)|2
∧

1≤j≤k≤n

dxj,k ∧ dyj,k

and dµS denotes the volume form of the Siegel metric

dµS(Z) :=

∧
1≤j≤k≤n

dxj,k ∧ dyj,k

det(Y )n+1

on Hn.
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1.4 Strategy of the proof

For the proofs, we follow the same general method developed in [11]. Let Vn
κ (Γ) denote the space of all

real-analytic functions ϕ : Hn → C, which have the transformation behaviour

ϕ(γZ) =

(
det(CZ +D)

det(CZ +D)

)κ/2

ϕ(Z)

(
γ =

(
A B
C D

)
∈ Γ

)
. (1.7)

For ϕ ∈ Vn
κ (Γ), we set

‖ϕ‖2 :=

ˆ

Γ\Hn

|ϕ(Z)|2 dµn(Z),

whenever it is defined. Let Hn
κ(Γ) := {ϕ ∈ Vn

κ (Γ) | ‖ϕ‖ < ∞} denote the Hilbert space of square
integrable functions in Vn

κ (Γ), equipped with the Petersson inner product. Let ∆(κ) denote the Siegel-
Maaß Laplacian invariant with respect to the action of Γ on ϕ in (1.7). Then, the operator ∆(κ) acts
on the smooth functions of Hn

κ(Γ) and extends to an essentially self-adjoint linear operator acting on a
dense subspace of Hn

κ(Γ).

The eigenvalues for the Laplace equation (∆(κ)+λ)ϕ = 0 satisfy the inequality λ ≥ (nκ/4)
(
(n+1)−κ

)
,

with the equality λ = (nκ/4)
(
(n + 1) − κ

)
being attained if and only if ϕ is of the form ϕ(Z) =

det(Y )κ/2f(Z) for some Siegel cusp form f ∈ Sn
κ (Γ) of weight κ, i.e., the C-vector space isomorphism

Sn
κ (Γ) ∼= ker

(
∆(κ) +

nκ

4
((n+ 1) − κ)id

)
(1.8)

induced by the assignment f 7→ det(Y )κ/2f holds (See [27, corollary 5.4]).

Then, in a manner similar to (4.1), we use the spectral decomposition of the heat kernel K
(κ,Γ)
t

corresponding to the Siegel–Maaß Laplacian ∆(κ) on Γ\Hn to generalize the relation in (1.4) to obtain

SΓ
κ (Z) = lim

t→∞
exp

(
− nκ

4
(κ− (n+ 1)) t

)
K

(κ,Γ)
t (Z,Z). (1.9)

As, for t > 0, both the function exp(−nκ(κ− (n+ 1)) t/4) and the heat kernel K
(κ,Γ)
t are monotonically

decreasing in t, from (1.9), one also obtains the inequality

SΓ
κ (Z) ≤ exp

(
− nκ

4
(κ− (n+ 1)) t

)
K

(κ,Γ)
t (Z) (t > 0), (1.10)

whence analyzing the heat kernel K
(κ,Γ)
t , we arrive at the results stated in Theorem 1.1.

The non-triviality in extending these results from n = 1 to n ≥ 1 lies in constructing the heat kernel

K
(κ)
t corresponding to the Siegel–Maaß Laplacian ∆(κ) on Hn from which the heat kernel K

(κ,Γ)
t on Γ\Hn

is obtained by periodization. We use a method of calculating spherical functions on real semisimple Lie
groups by reducing them to the complex case developed by Flensted-Jensen in [9] to construct a spherical
function for ∆(κ) on Hn and then use the traditional method of obtaining the heat kernel from a spherical

function to construct K
(κ)
t . The spherical function and the ensuing heat kernel so constructed are not

totally explicit, as they involve a change of variable that is somewhat implicit in nature. In the end,
we got around this difficulty in the cocompact case by using a counting function argument to estimate

the periodization sum in K
(κ,Γ)
t with an integral of K

(κ)
t over the radial coordinates, which allows us to

change back from the implicit change of variables. In the cofinite case, we consider a limiting case of

K
(κ)
t , which can be constructed explicitly. Thankfully, these special cases seem to suffice for our purpose.

1.5 Brief outline of the paper

In section 2 we gather some basic preliminaries on the symplectic group, Siegel upper half-space and
Siegel modular forms for later use in our calculations. In section 3 we gather the background on spherical
functions and construction of the heat kernel on symmetric spaces. Then we use the Flensted-Jensen
reduction method of calculating spherical functions on real semisimple groups via complex semisimple
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groups to construct the spherical function as well as the heat kernel on the Siegel upper half-space. All
these calculations being for the Laplace–Beltrami operator ∆, next we correct them for weight-κ to obtain
the heat kernel on Siegel upper half-space corresponding to the Siegel–Maass Laplacian ∆(κ). Finally, in
section 4, we analyze this weight-κ heat kernel to obtain uniform sup-norm bounds for Siegel cusp forms
on average over an orthonormal basis in both cocompact and cofinite cases.
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author acknowledges support from the Indian Institute of Technology, Madras. In parts, the material
of this manuscript is contained in the doctoral dissertation [28] of the second author completed under
the supervision of the first author at the Humboldt-Universität zu Berlin, during which he acknowledges
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Blomer, Anilatmaja Aryasomayajula and Aprameyan Parthasarathy for inspiring discussions related to
the material presented here. Both authors certify that they have no affiliations with or involvement in
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materials discussed in this manuscript.

2 Background on Siegel modular forms

In this section, we gather some basic preliminaries on the symplectic group, Siegel upper half-space and
Siegel modular forms from some standard references such as [10], [26] and [35].

2.1 Siegel upper half-space

For n ∈ N>0 and a commutative ring R, let Rm×n denote the set of (m × n)-matrices with entries in R
and Symn(R) denote the set of symmetric matrices in Rn×n. The Siegel upper half-space Hn of degree
n is then defined by

Hn := {Z = X + iY ∈ Cn×n |X,Y ∈ Symn(R) : Y > 0}.

The symplectic group Spn(R) of degree n is defined by

Spn(R) := {g ∈ R2n×2n | gtJng = Jn},

where Jn ∈ R2n×2n is the skew-symmetric matrix

Jn :=

(
0 1n

−1n 0

)

with 1n denoting the identity matrix of Rn×n. The group Spn(R) acts by the symplectic action

Hn ∋ Z 7→ gZ = (AZ +B)(CZ +D)−1
(
g =

(
A B
C D

)
∈ Spn(R)

)
(2.1)

on Hn. Under this action Im(Z) transforms as

Im(gZ) = (CZ +D)−t Im(Z)(CZ +D)−1, (2.2)

which, on taking determinants on both sides, gives

det(Im(gZ)) =
det(Im(Z))

| det(CZ +D)|2 .

Similarly, taking matrix-differentials on both sides of the symplectic action (2.1), it is easy to see that
under this action, the matrix-differential form dZ transforms as

d(gZ) = (CZ +D)−t dZ (CZ +D)−1. (2.3)

5



The arclength ds2
n and the volume form dµn on Hn in terms of Z = (zj,k)1≤j≤k≤n ∈ Hn are given by

ds2
n(Z) = tr(Y −1 dZ Y −1 dZ) (Z = X + iY ),

dµn(Z) =

∧
1≤j≤k≤n

dxj,k ∧ dyj,k

det(Y )n+1
(zj,k = xj,k + iyj,k).

(2.4)

From equations (2.2) and (2.3) it is obvious that the arclength ds2
n and the volume form dµn on Hn given

by the above equations are invariant under the symplectic action. Corresponding to this metric, we have
the Laplace–Beltrami operator

∆ = tr

(
Y

((
Y

∂

∂X

)t
∂

∂X
+

(
Y

∂

∂Y

)t
∂

∂Y

))

on Hn, called the Siegel Laplacian, which is also invariant under the symplectic action.

The geodesic distance s(Z,W ) between the points Z, W ∈ Hn is given by

s(Z,W ) =
√

2

(
n∑

j=1

log2

(
1 +

√
ρj

1 − √
ρj

))1/2

,

where ρj (1 ≤ j ≤ n) are the eigenvalues of the cross-ratio matrix

ρ(Z,W ) = (Z − W )(Z −W )−1(Z −W )(Z −W )−1 (Z,W ∈ Hn). (2.5)

Remark 2.1. Due to the action (2.1) of Spn(R) on Hn, the Siegel upper half-space can be viewed as a
Riemannian globally symmetric space G0/K0, where G0 = Spn(R) and K0 = Spn(R) ∩ O2n(R) ∼= Un is
the maximal compact subgroup of Spn(R) fixing the origin i1n ∈ Hn. An explicit correspondence between
G0/K0 and Hn is given by gK0 7→ g i1n. Under this identification, the action of G0 by left translation on
G0/K0 translates to the symplectic action (2.1) of G0 on Hn. The space G0/K0 is equipped with a natural
metric coming from the Killing form on the Lie algebra g0 = spn(R) of G0. Under this identification,
this metric takes the form of the metric given by (2.4) on Hn.

2.2 Arithmetic subgroups and fundamental domains

A subgroup Γ of Spn(R) is called discrete if it acts discontinuously on Hn, i.e., the orbit ΓZ = {γZ | γ ∈ Γ}
has no accumulation point in Hn, or equivalently, for any two compact sets K1,K2 ⊂ Hn, the set
{γ ∈ Γ | γ(K1) ∩K2 6= ∅} is finite. The most important example of a discrete subgroup of Spn(R) is the
Siegel modular group Γn := Spn(Z).

Definition 2.2. A subgroup Γ ( Spn(R) is called an arithmetic subgroup if Γ is commensurable to Γn,
i.e., the group Γ ∩ Γn has finite index in both Γ and Γn.

Because of their commensurability with the discrete subgroup Γn, arithmetic subgroups of Spn(R)
are also discrete.

Any arithmetic subgroup Γ of Spn(R) has a fundamental domain, but it is not unique. A fundamental
domain of the Siegel modular group Γn can be explicitly constructed by means of reduction theory applied
to the positive definite imaginary part Y of Z ∈ Hn. A vector ht = (h1, h2, . . . , hg) ∈ Zn is called primitive
if for 1 ≤ k ≤ n, we have gcd(hk, . . . , hn) = 1.

Definition 2.3. A positive definite matrix Y = (yj,k)1≤j,k≤n ∈ Pn is called Minkowski reduced if it
satisfies yk,k+1 ≥ 0 (1 ≤ k ≤ n−1) and for all primitive vectors h ∈ Zn, we have htY h ≥ yk,k (1 ≤ k ≤ n).

Proposition 2.4. A Minkowski reduced positive definite matrix Y satisfies the properties

(i) y1,1 ≤ y2,2 ≤ . . . ≤ yn,n,

(ii)
∣∣2yj,k

∣∣ ≤ yj,j (1 ≤ j < k ≤ n),

(iii) yk,k+1 ≥ 0 (1 ≤ k ≤ n− 1),

6



(iv) there exists a positive number c1(n) depending only on n such that

det(Y ) ≤
n∏

j=1

yj,j ≤ c1(n) det(Y ),

(v) there exists a positive number c2(n) depending only on n such that

c2(n)−1Y < Y D < c2(n)Y,

where Y D denotes the diagonal matrix made up of the diagonal elements y1,1, . . . , yn,n of the matrix
Y , i.e.,

Y D =



y1,1 0

. . .

0 yn,n


 .

Proof. See [10, Satz 2.5, Folgerung 2.6], [26, page 20].

Proposition 2.5. The set of points Z = X + iY ∈ Hn satisfying the following criteria forms a funda-
mental domain Fn of the Siegel modular group Γn:

(i) | det(CZ +D)| ≥ 1 for all ( A B
C D ) ∈ Γn,

(ii) Y = Im(Z) is Minkowski reduced,

(iii) for all 1 ≤ j, k ≤ n, the matrix X = (xj,k)1≤j,k≤n satisfies |xj,k| ≤ 1/2.

Proof. See [10, Satz 2.9].

The fundamental domain Fn of Γn is called the standard fundamental domain of Γn and the matrices
Z ∈ Fn are called Siegel reduced.

Proposition 2.6. If Z = X + iY ∈ Hn is also Siegel reduced, then Y satisfies the properties

(i) y1,1 ≥
√

3/2.

(ii) there exists a constant c3(n) > 0 depending only on n, such that Y ≥ c3(n)1n.

Proof. See [10, Hilfssatzs 2.11 ,2.12].

Using the fundamental domain Fn of the Siegel modular group Γn, we can construct fundamental
regions of other arithmetic subgroups of Γ of Spn(R). Consider the space of the left cosets {Γγ | γ ∈ Γn}.
Since Γγ1 = Γγ2 if and only if (Γ ∩ Γn)γ1 = (Γ ∩ Γn)γ2 and [Γn : Γ ∩ Γn] < ∞, they have a finite system
of representatives γ1, γ2, . . . , γm (m ∈ N≥1). Then,

F =

m⋃

j=1

γjFn (2.6)

is a fundamental region of Γ.

2.3 Boundary of the Siegel upper half space

The Siegel upper half-space Hn can be realized as bounded domain Dn = {ζ ∈ Symn(C) | ζζ̄ < 1n}
through the Cayley transformation l : Hn

∼−−→ Dn given by the assignment

Z 7→ ζ = (Z − i1n)(Z + i1n)−1, (2.7)

whose inverse l−1 : Dn −→ Hn is given by the assignment

ζ 7→ Z = i(1n + ζ)(1n − ζ)−1. (2.8)

7



The topological closure of Dn is given by Dn = {ζ ∈ Symn(C) | ζζ̄ ≤ 1n}. Through Cayley transfor-
mation, the symplectic action on Hn induces an analogous action of Spn(R) on Dn given by

(
A B
C D

)
ζ =

(
(A− iC)(ζ + 1) + i(B − iD)(ζ − 1)

)(
(A+ iC)(ζ + 1) + i(B + iD)(ζ − 1)

)−1

,

which extends to Dn (see [30, page 15]).

Two points ζ, η ∈ Dn are called equivalent if they can be connected by a finite number of holomorphic
curves.

Definition 2.7. A maximal subset in Dn of mutually equivalent points is called a boundary component
of Dn.

The space Dn is divided into a disjoint union of boundary components. Moreover, the symplectic
action transforms one boundary component to another. Therefore, the division of Dn into boundary
components is invariant under the symplectic action.

For an integer 0 ≤ j ≤ n, let

Dj
n =

{(
ζj 0
0 1n−j

) ∣∣∣∣ ζj ∈ Dj

}
∼= Dj

Then for all 0 ≤ j ≤ n, Dj
n is a boundary component. In particular, Dn

∼= Dn
n itself is a boundary

component. As

Dn =
⋃

0≤j≤n

Spn(R)Dj
n,

any boundary component P of Dn can be realized as P = gDj
n for some g ∈ Spn(R) and 0 ≤ j ≤ n (see

[30, page 17]). Hence, we call Dj
n a standard boundary component.

As Dj
n is isomorphic to the bounded realization Dj of the degree j Siegel upper half-space, we say

P = gDj
n is a boundary component of degree j. If j < n, we call P a proper boundary component. For

two boundary components Pj ,Pk of degrees j, k respectively, we write Pj < Pk if Pj ⊂ Pk. In that case
there exists g ∈ Spn(R) such that gPj = Dj

n, gPk = Dk
n and j ≤ k.

Remark 2.8. This result can be extended to the case of a chain of boundary components

P0 < . . . < Pj . . . < Pn−1

where Pj is of degree j ∈ {0, 1, . . . , n − 1}. Then in that case we have a g ∈ Spn(R) such that gPj =
Dj

n (0 ≤ j < n).

Definition 2.9. Let P be a boundary component of Dn. Then the group P (P) ( Spn(R) defined by

P (P) = {g ∈ Spn(R) | gP = P}

is called the parabolic subgroup of Spn(R) associated to P.

For the standard proper boundary components P = Dj
n (0 ≤ j < n), the groups Pj := P (Dj

n) has the
structure (see [30, page 21])

Pj =








A′ 0 B′ ⋆
⋆ u ⋆ ⋆
C′ 0 D′ ⋆
0 0 ⋆ u−t




∣∣∣∣∣∣∣∣

(
A′ B′

C′ D′

)
∈ Spj(R), u ∈ GLn−j(R)




.

For a general boundary component P of Dn, realized as P = gDj
n for some g ∈ Spn(R) and some standard

boundary component Dj
n (0 ≤ j < n),the parabolic subgroup P (P) associated to P can be obtained as

P (P) = gPj g
−1.
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Definition 2.10. A boundary component P of Dn is called rational if the parabolic subgroup P (P)
associated to it is defined over Q. The set

D⋆
n :=

⊔

P rational

P ( Dn

is called the rational closure of Dn.

Remark 2.11. If P is a rational boundary component of Dn, then there is a σ ∈ Spn(Z), such that σP = Dj
n

for some standard boundary component Dj
n (0 ≤ j < n).

The boundary components in the Siegel upper-half space Hn are obtained from the bounded realization
Dn via the inverse Cayley transform. We denote the standard boundary components on Hn by Hj

n :=
l−1Dj

n (0 ≤ j < n). The rational closure H⋆
n of Hn is endowed with the cylindrical topology (see [30, page

35]). Under this topology, a sequence

Z(ν) :=

(
Z1,1(ν) Z1,2(ν)
Z1,2(ν) Z2,2(ν)

)
(ν ∈ N>0, Z(ν) ∈ Hn, Z1,1(ν) ∈ Hj)

on Hn converges to a point Z ∈ Hj
n

∼= Hj in H⋆
n if and only if Z1,1(ν) → Z in Hj and Y2,2(ν) −

Y1,2(ν)Y2,2(ν)Y1,2(ν) → ∞ in Hn−j. Under the assumption that Y1,2(ν) is bounded, the latter condition
reduces to Y2,2(ν) → ∞.

In general, for any boundary component P of Hn, one can show that there exists a one-parameter
subgroup wP : R → G such that

lim
t→0

wP(t)−1O = OP,

where O = i1n is the base point of Hn and OP is the base point of P. For P = Hj
n, we denote wP by wj ,

which takes the form

wj(t) =




1j 0 0 0
0 t1n−j 0 0
0 0 1j 0
0 0 0 t−1

1n−j


 (t ∈ R \ {0}).

It is easy to see that in the above sense, wj(t)−1i1n → i1j ∈ Hj
n

∼= Hj as t → 0.

The parabolic subgroups P (P) defined in Definition 2.9 can be characterized in terms of wP as

P (P) = {g ∈ Spn(R) | lim
t→0

wP(t) g wP(t)−1 < ∞}.

We define

W (P) = {g ∈ Spn(R) | lim
t→0

wP(t) g wP(t)−1 = 1}

Remark 2.12. Given Z ∈ P, if for any sequence Z(ν) (ν ∈ N>0) in Hn such that Z(ν) → Z in H⋆
n, we

have gZ(ν) → Z for some g ∈ Spn(R), then it is easy to see that g ∈ W (P).

For P = Hj
n, we denote W (P) by Wj , which can be shown to be (see [30, page 21])

Wj =








1j 0 0 Q
P t

1n−j Qt B
0 0 1j −P
0 0 0 1n−j




∣∣∣∣∣∣∣∣
QtP +B = P tQ+Bt




.

Then, setting P = Lt, Q = Ht and B = LHt + S2, we have

Wj =

{(
A 0
0 A−t

)(
1n S
0 1n

) ∣∣∣∣ A =

(
1j 0
L 1n−j

)
, S =

(
0 Ht

H S2

)}
(0 ≤ j < n), (2.9)

where L,H ∈ R(n−j)×j and S2 ∈ R(n−j)×(n−j), S2 = St
2.

Next, for an arithmetic subgroup Γ ( Spn(R), consider the set M := Γ\Hn.
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Theorem 2.13. The quotient M⋆ := Γ\H⋆
n endowed with the quotient topology, is a compact Hausdorff

space. It contains M as an open everywhere dense subset. M⋆ is the finite union of subspaces Mj :=
(Γ∩P (Pj))\Pj, where Pj runs through a set of representatives of equivalence classes modulo Γ of rational
boundary components of Hn. The closure of Mj is the union of Mj and the subspaces Mk of Mj of strictly
smaller degree.

Proof. See [2, Corollary 4.11].

The above compactification M⋆ of M is called the Satake-Baily-Borel compactification of M . For
Γ = Γn = Spn(Z), it takes the form

(Γn\Hn)⋆ =

n⊔

j=0

(Γn ∩ Pj)\Hj
n

∼=
n⊔

j=0

Γj\Hj . (2.10)

Remark 2.14. By the remarks 2.8 and 2.11, the group Γn acts transitively on the rational boundary
components of Hn. Hence, for any arithmetic subgroup Γ ( Sp(n,R), we only need to consider Pj =
Hk

n (0 ≤ k < n) to fully describe the boundary of M = Γ\Hn.

2.4 Siegel modular forms

Definition 2.15. A function f : Hn → C is called a Siegel modular form of weight κ and degree n with
respect to the Siegel modular group Γn = Spn(Z) if it satisfies the following conditions:

(i) f is holomorphic,

(ii) f(γZ) = det(CZ +D)κf(Z) for all γ = ( A B
C D ) ∈ Γ,

(iii) For every Y0 > 0, the function f is bounded in the region Y ≥ Y0.

We denote the space of all such functions by Mn
κ(Γn). For all S ∈ Symn(Z), we have ( 1n S

0 1n
) ∈ Γn

. Then f : Hn → C is a holomorphic function satisfying f(Z + S) = f(Z). Therefore, f has a Fourier
expansion of the form

f(Z) =
∑

T ∈Symn(Q)
T half-integral

a(T ) exp(2πi tr(TZ)),

where T = (tj,k)1≤j,k≤n being half-integral implies that tj,j , 2tj,k ∈ Z (1 ≤ j ≤ k ≤ n). Also, since

U ∈ GL(n,Z) implies ( Ut 0
0 U−1 ) ∈ Γn, the function f satisfies

det(U)κf(U tZU) = f(Z) (U ∈ GL(n,Z)).

So, U ∈ SL(n,Z) implies that f(U tZU) = f(Z). One can show that a holomorphic function f : Hn → C

satisfying these two transformation behaviours, i.e., f(Z + S) = f(Z) for integral symmetric matrices S
and f(U tZU) = f(Z) for U ∈ SL(n,Z), under the assumption n ≥ 2, has a Fourier expansion of the form

f(Z) =
∑

T ∈Symn(Q), T >0
T half-integral

a(T ) exp(2πi tr(TZ)). (2.11)

In particular, for some Y0 > 0, the function f is bounded in the region Y ≥ Y0. Thus, for Γ = Γn and
n > 1, condition (iii) follows from conditions (i) and (ii). This is the so-called Koecher’s principle.

Definition 2.16. Let f : Hn → C be a function so that the limit

lim
t→∞

f

(
Z 0
0 it

)
(Z ∈ Hn−1)

exists. Then we obtain another function Φ(f) : Hn−1 → C defined by

Φ(f)(Z) := lim
t→∞

f

(
Z 0
0 it

)
(Z ∈ Hn−1).

This operator Φ: Mn
κ(Γn) → Mn−1

κ (Γn−1) is called the Siegel Φ-operator.
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Definition 2.17. A Siegel modular form f ∈ Mn
κ(Γn) is called a Siegel cusp form if Φ(f) = 0. We

denote the space of Siegel cusp forms by Sn
κ (Γn).

Proposition 2.18. A Siegel modular form f ∈ Mn
κ(Γn) is a Siegel cusp form if and only if in the Fourier

expansion (2.11), a(T ) 6= 0 implies that T is positive definite.

Proof. See [10, Hilfssatz 3.9].

Proposition 2.19. Let f ∈ Sn
κ (Γn) and let c > 0. Then there exist positive numbers c1 and c2 such that

|f(Z)| ≤ c1 exp(−c2 tr(Y ))

for all Z ∈ Hn, for which Y is Minkowski reduced and Y ≥ c1n.

Proof. See [26, page 57]

Next we define Siegel modular forms for arithmetic subgroups.

Definition 2.20. Let Γ ⊂ Spn(R) be an arithmetic subgroup and γj ∈ Spn(Z) (j = 1, . . . , h) denote a
set of representatives for the left cosets of Γ ∩ Spn(Z) in Spn(Z). Then, a Siegel modular form of weight
κ and degree n for Γ is a function f : Hn −→ C satisfying the following conditions:

(i) f is holomorphic;

(ii) f(γZ) = det(CZ +D)κf(Z) for all γ =
(

A B
C D

)
∈ Γ;

(iii) given Y0 ∈ Symn(R) with Y0 > 0, the quantities det(CjZ+Dj)−κf(γjZ) are bounded in the region

{Z = X + iY ∈ Hn |Y ≥ Y0} for the set of representatives γj =
(Aj Bj

Cj Dj

)
∈ Spn(Z) (j = 1, . . . , h).

We denote the space of all such functions by Mn
κ(Γ). Just as in Definition 2.17, a Siegel modular

form f ∈ Mn
κ(Γ) with respect to the arithmetic subgroup Γ is called a Siegel cusp forms with respect to

Γ if Φ(f) = 0. We denote the space of all such functions by Sn
κ (Γ).

For an arithmetic subgroup Γ ( Spn(R), define

t(Γ) :=

{
S ∈ Symn(R)

∣∣∣∣
(
1n S
0 1n

)
∈ Γ

}
.

Then t(Γ) is commensurable to t(Γn). Also, since t(Γn) is commutative, [t(Γn) : t(Γn ∩ Γ)] < ∞ implies
that there is an ℓ ∈ N≥1 such that ℓt(Γ) ⊆ t(Γn). Hence, f ∈ Mn

κ(Γ) satisfies f(Z + ℓS) = f(Z) (S ∈
Symn(R)). Therefore, the function fℓ defined by fℓ(Z) = f(ℓZ) satisfies fℓ(Z + S) = fℓ(Z), (S ∈
Symn(R)) and hence has a Fourier expansion

fℓ(Z) = f(ℓZ) =
∑

T ∈Symn(Q), T >0
T half-integral

a(T ) exp(2πi tr(TZ)),

whence, replacing Z by Z/ℓ, we have a Fourier expansion of f of the form

f(Z) =
∑

T ∈Symn(Q), T >0
T half-integral

a(T ) exp

(
2πi

ℓ
tr(TZ)

)
. (2.12)

Just like in Proposition 2.18, for a Siegel cusp form f ∈ Sn
κ (Γ) for which, the Fourier coefficients a(T )

are 0 unless T is positive definite.

Proposition 2.21. Let f ∈ Sn
κ (Γ) be a Siegel cusp form. Then, for the function

ϕ(Z) := det(Y )κ/2f(Z),

|ϕ(Z)| has a maximum in Hn.

Proof. See [10, Bemerkung 6.10].
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Both Mn
κ(Γ) and Sn

κ (Γ) form finite-dimensional vector spaces over C. The space Sn
κ (Γ), with the

Petersson inner product given by

〈f, g〉 :=

ˆ

Γ\Hn

(det Y )κf(Z)g(Z) dµn(Z) (f, g ∈ Sn
κ (Γ)),

becomes a Hermitian inner product space.

2.5 Siegel Maaß forms and ∆(κ)

In order to derive sup-norm bounds for cusp forms f ∈ Sn
κ (Γ), one introduces the function

ϕ(Z) := det(Y )κ/2f(Z) (Z = X + iY ∈ Hn, f ∈ Sn
κ (Γ))

with transformation behaviour

ϕ(γZ) = det(Im(γZ))κ/2f(γZ) =

(
det(CZ +D)

det(CZ +D)

)κ/2

ϕ(Z), (2.13)

for all γ = ( A B
C D ) ∈ Γ. We begin by defining a space Vn

κ (Γ) of real-analytic functions on Hn that
transforms like (2.13) with appropriate growth conditions.

Definition 2.22. Let Γ ⊂ Spn(R) be a subgroup commensurable with Spn(Z), i.e., the intersection
Γ ∩ Spn(Z) is a finite index subgroup of Γ as well as of Spn(Z). We let γj ∈ Spn(Z) (j = 1, . . . , h) denote
a set of representatives for the left cosets of Γ ∩ Spn(Z) in Spn(Z). We then let Vn

κ (Γ) denote the space
of all functions ϕ : Hn → C satisfying the following conditions:

(i) ϕ is real-analytic;

(ii) ϕ(γZ) = det(CZ +D)κ/2 det(CZ +D)−κ/2ϕ(Z) for all γ =
(

A B
C D

)
∈ Γ;

(iii) given Y0 ∈ Symn(R) with Y0 > 0, there exist M ∈ R>0 and N ∈ N such that the inequalities

| det(CjZ +Dj)−κ/2 det(CjZ +Dj)κ/2ϕ(γjZ)| ≤ M tr(Y )N

hold in the region {Z = X+iY ∈ Hn |Y ≥ Y0} for the set of representatives γj =
(Aj Bj

Cj Dj

)
∈ Spn(Z)

(j = 1, . . . , h).

Remark 2.23. For ϕ ∈ Vn
κ (Γ), we set

‖ϕ‖2 :=

ˆ

Γ\Hn

|ϕ(Z)|2 dµn(Z),

whenever it is defined. In this way we obtain the Hilbert space

Hn
κ(Γ) :=

{
ϕ ∈ Vn

κ (Γ)
∣∣ ‖ϕ‖ < ∞

}

equipped with the inner product

〈ϕ, ψ〉 =

ˆ

Γ\Hn

ϕ(Z)ψ(Z) dµn(Z) (ϕ, ψ ∈ Hn
κ(Γ)).

We note that in order to enable ‖ϕ‖ < ∞, the exponent N ∈ N in part (iii) of Definition 2.22 has to be 0.

To compensate for not being holomorphic, the functions of the form ϕ(Z) = det(Y )κ/2f(Z) (f ∈
Sn

κ (Γ)) satisfy the property of being eigenfunctions of a certain differential operator introduced by Maaß
that is invariant under the transformation behaviour (2.13).
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Given Z = X + iY ∈ Hn, we start by introducing the following symmetric (n× n)-matrices of partial
derivatives:

(i)

(
∂

∂X

)

j,k

:=
1 + δj,k

2

∂

∂xj,k

,

(ii)

(
∂

∂Y

)

j,k

:=
1 + δj,k

2

∂

∂yj,k

,

(iii)
∂

∂Z
:=

1

2

(
∂

∂X
− i

∂

∂Y

)
,

(iv)
∂

∂Z
:=

1

2

(
∂

∂X
+ i

∂

∂Y

)
,

where δj,k is the Kornecker delta symbol.

Definition 2.24. Given a positive integer κ, the differential operator ∆(κ) given by

∆(κ) = tr

(
Y

((
Y

∂

∂X

)t
∂

∂X
+

(
Y

∂

∂Y

)t
∂

∂Y

)
− iκY

∂

∂X

)

acting on smooth complex valued functions on Hn is called the Siegel–Maaß Laplacian of weight κ.

By its invariance under the transformation behaviour (2.13), the operator ∆(κ) acts on the Hilbert
space Hn

κ(Γ) (see [27, Remark 4.6]).

Definition 2.25. Let Γ ⊂ Spn(R) be a subgroup commensurable with Spn(Z). The elements of the
Hilbert space Hn

κ(Γ) are called automorphic forms of weight κ and degree n for Γ. Moreover, if ϕ ∈ Hn
κ(Γ)

is an eigenform of ∆(κ), it is called a Siegel–Maaß form of weight κ and degree n for Γ.

Theorem 2.26. Let Γ ⊂ Spn(R) be a subgroup commensurable with Spn(Z) and let ϕ ∈ Hn
κ(Γ) be a

Siegel–Maaß form of weight κ and degree n for Γ. Then, if ϕ is an eigenform of ∆(κ) with eigenvalue λ,
we have λ ∈ R and

λ ≥ nκ

4
(n− κ+ 1),

with equality attained if and only if the function ϕ is of the form ϕ(Z) = det(Y )κ/2f(Z) for some Siegel
cusp form f ∈ Sn

κ (Γ) of weight κ and degree n for Γ. In other words, there is an isomorphism

Sn
κ (Γ) ∼= ker

(
∆(κ) +

nκ

4
(n− κ+ 1)id

)

of C-vector spaces, induced by the assignment f 7→ det(Y )κ/2f .

Proof. See [27, Corollary 5.4]

3 Construction of the heat kernel

To use (1.10) to obtain sup-norm bounds for the quantity SΓ
κ (Z), we need to obtain a somewhat explicit

form for the heat kernel K
(κ)
t corresponding to the Siegel–Maaß Laplacian ∆(κ) on Hn. In the theory

of harmonic analysis on symmetric spaces, there is a standard way of obtaining the heat kernel Kt

corresponding to the Laplace–Beltrami operator ∆ from the spherical function on the given symmetric

space, from which, one can use a weight-correction technique to obtain the heat kernel K
(κ)
t corresponding

to ∆(κ). Thus, the problem of obtaining a somewhat explicit form forK
(κ)
t on Hn translates to the problem

of obtaining a somewhat explicit form for the spherical function φλ on Spn(R). It is difficult to do it
directly. Instead, we wield a technique developed by Flensted-Jensen in [9] of obtaining the spherical
function φλ on a real semisimple group by reducing it to obtaining the spherical function ΦΛ on the
corresponding complex semisimple group, which is much simpler.

In the first two subsections, we briefly recall the general theory of spherical functions on a real
semisimple group via the Flensted-Jensen reduction. The general reference for these subsections are [20]
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and [9]. In the third subsection, we recall from [12] and [13], the general procedure of construction of
the heat kernel on a real semisimple group by spherical inversion. Then in the next two subsections we
implement this procedure for the special case of the symplectic group. Finally, in the last subsection, we
apply a weight-correction procedure to obtain the heat kernel on Hn corresponding to ∆(κ).

But first, we need to fix some basic notations for this section.

3.1 Notation

Let g be a complex semisimple Lie algebra with a Cartan decomposition g = u + p corresponding to a
Cartan involution θ on g. Let g0 be a non-compact real form of g. The Cartan involution θ on g restricts
to the Cartan involution θ0 on g0. Let g0 = k0 + p0 be the Cartan decomposition of g0 corresponding
to the Cartan involution θ0 on g0. Then u = k0 + ip0 is a compact real form of g and k = k0 + ik0 is a
complex subalgebra of g. Denote by a and a0 the maximal abelian subspaces of p and p0, respectively.
We note here that k0, p0 and a0 are related to k, u, p and a via k0 = k ∩ g0 = u ∩ g0, p0 = p ∩ g0 and
a0 = a ∩ g0.

The Killing form B0 on g0 is just the restriction of the complex Killing form B′ of g, whereas the
Killing form B of g as a real Lie algebra, is 2B′. This means that the Euclidean structures on a0, induced
by B0 and B are different. Denote by 〈·, ·〉0 and || · ||0 the scalar product and norm induced by B0 on a0

as well as 〈·, ·〉 and || · || for the scalar product and norm induced by B on p. So in particular

‖H‖2
0 =

1

2
‖H‖2 for all H ∈ a0.

By the Killing form identification of a0 and a with their duals, a∨
0 is embedded in a∨. The Euclidean

structures on the spaces a and p induce Euclidean structures on the dual spaces a∨ and p∨, respectively,
by duality. Denote by 〈·, ·〉0 and || · ||0 the induced scalar product and norm on a∨

0 as well as by 〈·, ·〉 and
|| · || the induced scalar product and norm on p∨. So in particular

‖λ‖2
0 =

1

2
‖λ‖2 for all λ ∈ a∨

0 .

Let ∆ be the root system of the pair (g, a), by which we mean that ∆ is the set of restricted roots
for the real Lie algebra g with respect to the maximal abelian subalgebra a. Then each root space
gα (α ∈ ∆) has dimension mα = 2. Let ∆0 be the restricted root system of the pair (g0, a0). Then
∆0 = {α|a0 |α ∈ ∆, α|a0 6= 0}. Let W and W0 be the Weyl groups corresponding to the restricted root
systems ∆ and ∆0.

Let ∆+ and ∆+
0 be choices of positive restricted roots in the restricted root systems ∆(g, a) and

∆0(g0, a0), respectively. Let a+ and a+
0 be the corresponding choices of positive Weyl chambers in a and

a0, respectively. Let ρ and ρ0 denote the half-sums (with multiplicity)

ρ =
1

2

∑

α∈∆+

mα α =
∑

α∈∆+

α and ρ0 =
1

2

∑

λ∈∆+
0

mαα

of the positive restricted roots for (g, a) and (g0, a0), respectively. Similarly, let π and π0 denote the
products of the indivisible positive restricted roots

π(λ) =
∏

α∈∆+

〈α, λ〉 (λ ∈ a∨) and π0(λ) =
∏

α∈∆+
0

〈α, λ〉 (λ ∈ a∨
0 ), (3.1)

respectively.

Denoting n =
∑

α∈∆+ gα and n0 = n ∩ g0, the algebras g and g0 have Iwasawa decompositions
g = u + a + n and g0 = k0 + a0 + n0, respectively.

Let G be a Lie group with Lie algebra g, and let K, U , A, N , G0, K0, A0 and N0 be the analytic
subgroups corresponding to k, u, a, n, g0, k0, a0 and n0. Corresponding to the algebra level Iwasawa
decompositions g = u + a + n and g0 = k0 + a0 + n0 of g and g0, respectively, the groups G and G0

have the group level Iwasawa decompositions G = UAN and G0 = K0A0N0, so that the mapping
(u, a, n) 7→ uan is a diffeomorphism of U × A × N onto G and K0 × A0 × N0 onto G0. Let for g ∈ G,
H(g) ∈ a be determined by g ∈ U exp(H(g))N . If g ∈ G0, then we have H(g) ∈ a0.
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The group G0 also has the polar decomposition G0 = K0A0K0, by which, for each g ∈ G0, there is
an a ∈ A0 such that g ∈ K0 aK0. If, for a particular choice of a positive Weyl chamber a+

0 , we restrict

ourselves to A+
0 = exp(a+

0 ), then for each g ∈ G0, the choice of a ∈ A+
0 such that g ∈ K0 aK0, is unique.

It can be shown that the set C∞(K0\G0/K0) of K0-bi-invariant C∞-functions on G0, via restriction to
A0, is in bijective correspondence with C∞

W0
(A0), the set of W0-invariant C∞-functions on A0.

Similarly, for the complex group G, we have the polar decomposition G = UA+U . Furthermore, G

also has the Mostow decomposition G = UA+
0 K, by which, for each g ∈ G, there is a unique a ∈ A+

0

such that g ∈ UaK. The set C∞(U\G/K) is in bijective correspondence, via restriction to A0, with the
set C∞

W0
(A0) of W0-invariant C∞-functions on A0 (see [9, Theorem 4.1]).

3.2 Spherical functions on G0/K0

Consider the Riemannian globally symmetric space G0/K0. Let π : G0 → G0/K0 denote the natural
mapping of G0 onto G0/K0 and o ∈ G0/K0 denote the point o = π(e), where e ∈ G0 is the neutral

element of G0. If f is any function on G0/K0, let f̃ denote the function f̃ = f ◦ π on G. Let D(G0)
denote the set of all left-invariant differential operators on G0, DK0(G0) ( D(G0) the subspace of
D(G0) containing left-invariant differential operators on G0 which are also right-invariant under K0 and
D(G0/K0) the algebra of differential operators on G0/K0 invariant under all left translations of G0/K0

by G0.

Definition 3.1. A complex-valued function φ ∈ C∞(G0/K0) on G0/K0 is called a spherical function on
G0/K0 if it satisfies the following properties:

(i) φ(o) = 1,

(ii) Dφ = λD φ for each D ∈ D(G0/K0), where λD is a complex number,

(iii) φ(k0gK0) = φ(gK0) for all g ∈ G0 and k0 ∈ K0.

The function φ̃ = φ ◦ π on G0 is called a spherical function on G0 if and only if φ is a spherical function
on G0/K0.

From the above definition it is easy to see that a spherical function φ̃ on G0 is characterized by the
following properties:

(i) φ̃(e) = 1,

(ii) Dφ̃ = λD φ̃ for each D ∈ DK0(G0), where λD is a complex number,

(iii) φ̃(k0gk
′
0) = φ̃(g) for all g ∈ G0 and all k0, k

′
0 ∈ K0.

As noted in the last subsection, due to the bi-invariance of φ̃ under K0, it suffices to know φ̃ ∈
C∞(K0\G0/K0) on the Weyl chamber A+

0 = exp(a+
0 ).

Remark 3.2. As the notion of spherical functions on the group G0 is equivalent to that on the symmetric
space G0/K0, for convenience, we denote the spherical functions on both G0 and G0/K0 by φ.

For a symmetric space G0/K0 of non-compact type, Harish-Chandra [18] gave the following charac-
terization of spherical functions on G0/K0 in terms of an integral.

Theorem 3.3. Let G0 be a connected semisimple Lie group with finite centre and K0 a maximal compact
subgroup of G0. Then, as λ runs through (aC0 )∨, the functions

φλ(g) =

ˆ

K0

exp
(
(iλ− ρ0)(H(gk0))

)
dµ(k0) (g ∈ G0), (3.2)

where dµ(k0) denotes the Haar measure on K0, exhaust the class of spherical functions on G0. Moreover,
two such functions φµ and φλ are identical if and only if µ = σλ for some σ in the Weyl group W0.

Proof. See [20, Chapter IV, Theorem 4.3].
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Lemma 3.4. Let G0 be a connected semisimple Lie group with finite centre and K0 a maximal compact
subgroup of G0. Then, for a ∈ A+

0 , we have

φ0(a) ≥ exp(−ρ0(log(a))).

Proof. Given the positive Weyl chamber a+
0 , let +a0 denote the dual cone defined by

+a0 := {H ∈ a0 |B(H,H ′) > 0, ∀H ′ ∈ a+
0 },

and let +a0 denote its closure. Then, by [20, Chapter IV, Lemma 6.5], for a ∈ A+
0 , we have

log(a) −H(ak0) ∈ +a (k0 ∈ K0),

which implies that

ρ0(log(a)) ≥ ρ0(H(ak0)) (k0 ∈ K0). (3.3)

Then, by Harish-Chandra’s characterization of φλ (λ ∈ a∨
0 ) in terms of the integral

φλ(g) =

ˆ

K0

exp
(
(iλ− ρ0)(H(gk0))

)
dµ(k0) (g ∈ G0)

given in equation (3.2), we have

φ0(a) =

ˆ

K0

exp
(

− ρ0(H(ak0))
)

dµ(k0)

≥ exp
(

− ρ0(log(a))
) ˆ

K

dµ(k0) = exp
(

− ρ0(log(a))
)

(a ∈ A+
0 ),

thereby proving the lemma.

Remark 3.5. In [18], Harish-Chandra gave a series expansion of φλ with leading coefficients c(σλ) (σ ∈
W0). This function, called Harish-Chandra’s c-function, features prominently in the theory of spherical
transforms and was explicitly determined by Gindikin and Karpelevic as a meromorphic function on
(aC0 )∨. In particular, for G0 = Spn(R), corresponding to the vector λ = λ1e1 + . . .+λnen ∈ a∨ ∼= Rn (see
subsection 3.5), Bhanu Murti [3] showed that

∣∣c(λ)
∣∣−2

=
1

πn2/2

∏

1≤j≤n

λj

2
th
(λj

2
π
) ∏

1≤j<k≤n

λj + λk

2
th
(λj + λk

2
π
)

×

×
∏

1≤j<k≤n

λj − λk

2
th
(λj − λk

2
π
)
.

(3.4)

Definition 3.6. Let f be a smooth function on G0 which is bi-invariant under K0. The function
f̂ : a∨

0 → C defined by

f̂(λ) =

ˆ

G

f(g)φ−λ(g) dµ(g) (λ ∈ a∨
0 ), (3.5)

is called the spherical transform of f at λ ∈ a∨
0 .

The next theorem states the crucial inversion formula for the spherical transform.

Theorem 3.7. For g = k1 exp(H(g))k2 ∈ G0 (k1, k2 ∈ K0, H(g) ∈ a0), define |g| := B(H(g), H(g)).
Then the spherical L2-Schwartz space C (K0\G0/K0) is the space of all functions f ∈ C∞(K0\G0/K0)
such that for all N ∈ N≥1 and D ∈ D(G0),

sup
g∈G0

(1 + |g|)N |Df(g)|φ0(g)−1 < ∞.

Let S (a∨
0 ) denote the usual Schwartz space on a∨

0 of rapidly decreasing smooth functions and SW0 (a∨
0 )

be the subspace of W0-invariant elements. Further, let H R(a∨
0 ) (R ∈ R>0) denote the set of functions f
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on a∨
0 satisfying the criterion that for each N ∈ N≥1, there exists a constant CN ∈ R>0, for which the

function f satisfies the condition

|f(λ)| ≤ CN (1 + |λ|)−N exp(R| Im(λ)|) (λ ∈ a∨
0 )

and let H (a∨
0 ) =

⋃
R>0 H R(a∨

0 ). Let HW0 (a∨
0 ) and H R

W0
(a∨

0 ) denote the respective subspaces of W0-
invariant elements. Then the following assertions hold:

(i) The spherical transform given by the assignment f 7→ f̂ induces a bijection of C (K0\G0/K0) onto
SW0 (a∨

0 ).

(ii) Restriction of the domain of the above transform to C∞
c (K0\G0/K0) ( C (K0\G0/K0) restricts the

bijection onto the subspace HW0 (a∨
0 ) ( SW0 (a∨

0 ).

(iii) For f ∈ C (K0\G0/K0) and f̂ ∈ SW0 (a∨
0 ), we have the formula, called the inverse spherical trans-

form, given by

f(g) =

ˆ

a
∨

0

f̂(λ)φλ(g)
∣∣c(λ)

∣∣−2
dλ (g ∈ G0),

where dλ denotes the Euclidean measure on a∨
0 /W0.

(iv) As C (K0\G0/K0) is dense in L2(K0\G0/K0) and its image SW0 (a∨
0 ) is dense in

L2(a∨
0 /W0,

∣∣c(λ)
∣∣−2

dλ), the spherical transform given by the assignment f 7→ f̂

extends by continuity to an isometry of L2(K0\G0/K0) onto L2(a∨
0 /W0,

∣∣c(λ)
∣∣−2

dλ), thereby giving
the equality

ˆ

G0

|f(g)|2 dµ(g) =

ˆ

a
∨

0

|f̂(λ)|2|c(λ)|−2 dλ.

Proof. See [20, Chapter IV, Section 7] and [14, Sections 5 and 6].

One should note here that everything said above concerning spherical functions on real semisimple
groups G0 with respect to K0 applies equally to spherical functions on complex semisimple groups G
with respect to U , which is just the special case where g has a complex structure. However, using
Harishchandra’s series expansion of spherical function in Remark 3.5, in case of a complex Lie group G,
the spherical function on G takes the following much simpler form.

Theorem 3.8. Let G be a complex Lie group. Then the spherical function of G corresponding to λ ∈ a∨

is given by

φλ(a) =
π(ρ)

π(iλ)

∑
σ∈W det(σ) exp(iσλ(log(a)))∑
σ∈W det(σ) exp(σρ(log(a)))

(a ∈ A+),

where π(λ) =
∏

α∈∆+

〈α, λ〉. Moreover, the c-function in this case is given by

c(λ) = π(ρ)/π(iλ).

Proof. See [20, Chapter IV, Section 5]

3.3 Flensted-Jensen reduction

Now consider g as a Lie algebra over R. Let DR(K\G) denote the set of right-invariant differential
operators on the coset space K\G = {Kg | g ∈ G}.

Let

C∞(K\G/U) = {φ ∈ C∞(G) |φ(kgu) = φ(g)}.

The main result in [9] is the following theorem that enables us to lift many questions related to the analysis
of spherical functions on a real group G0, to analogous questions concerning the spherical functions on
the corresponding complex group G.
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Theorem 3.9. There is a one-to-one correspondence induced by φ 7→ φη between the set of spherical
functions φ on G0/K0 and the set of functions ψ = φη on G satisfying

(i) ψ(e) = 1,

(ii) Dψ = λDψ for all D ∈ DR(K\G), where λD is a complex number,

(iii) ψ ∈ C∞(K\G/U),

such that

φ(gΘ(g)−1) = φη(g) (g ∈ G0),

where Θ: G0 → G0 is the involutive automorphism of G0 such that (dΘ)e = θ.

Proof. See [9, Section 5].

This allows us to identify C∞(K0\G/K0) with C∞(K\G/U) and write φ instead of φη. Let φλ (λ ∈
a∨

0 ) denote the spherical functions on G0/K0 and ΦΛ (Λ ∈ a∨) the spherical functions on G/U . If λ ∈ a∨
0 ,

define Λ ∈ a∨ by

Λ + iρ = 2(λ+ iρ0).

Then we have

ΦΛ(g) =

ˆ

U

φλ(ug) dµ(u) (g ∈ G),

where dµ(u) is the normalized Haar measure on U . Under this setup, the following theorem enables us to
calculate spherical functions on non-compact real Lie groups from spherical functions on the corresponding
complex Lie group via an integral transform.

Theorem 3.10. Let g0 be a normal real form of the complex Lie algebra g. Assume that the Haar
measure dµ(k) on K is normalized such that on compact groups the total mass is 1 and on non-compact,
d-dimensional spaces the measure is (2π)−d/2 times the volume element so that the Euclidean Fourier
transform is an isometry. Then, the spherical functions φλ on G0/K0 and ΦΛ on G/U are related by the
equation

φλ(gΘ(g)−1) = |c(λ)|2|π0(λ)|2
ˆ

K

Φ2λ(kg) dµ(k) (λ ∈ a∨
0 ). (3.6)

In particular, we have

|c(λ)|−2 = |π0(λ)|2
ˆ

K

Φ2λ(k) dµ(k) (λ ∈ a∨
0 ).

Proof. See [9, Section 7].

3.4 Heat kernel on G0/K0

Let ∆X be the Laplace-Beltrami operator on X = G0/K0 corresponding to the natural metric on X
defined by the Killing form B on g0. Then ∆X can be shown to be descending from the Casimir element
ω ∈ U(g0) of the universal enveloping algebra U(g0), which, subject to a choice of basis {Xj}1≤j≤n of
g0, can be defined as the sum

ω =

n∑

j=1

X∗
jXj ,

where {X∗
j }1≤j≤n is the dual basis with respect to the Killing form B on g0 (see [20, p. 331]). The

spherical function φλ (λ ∈ a∨
0 ) is then an eigenfunction of ∆X with eigenvalue λω = −(〈ρ0, ρ0〉0 + 〈λ, λ〉0)

(see [20, p. 427]), i.e.,

∆Xφλ(x) = λω φλ(x) (x ∈ G0/K0, λ ∈ a∨
0 ).
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Definition 3.11. The heat kernel on G0/K0 is the fundamental solution Kt(x) ∈ L2(G0/K0) for each
t > 0 to the heat equation

∂ut(x)

∂t
= ∆Xut(x) (t > 0, x ∈ G0/K0)

u0(x) = f(x) (f ∈ C∞
c )

(3.7)

in the sense that for any f ∈ C∞
c , its convolution ut = f ∗Kt is a solution to the above equation satisfying

‖f ∗Kt‖2 → 0 as t → 0.

In [12, 13], Gangolli, using spherical transform, constructs a function Kt that has the standard
properties of the fundamental solution of the heat equation on G0/K0.

Theorem 3.12. Let C (K0\G0/K0) be the L2-Schwartz space defined in Theorem 3.7. The function
Kt : G0/K0 → R (t > 0) defined by

Kt(x) =

ˆ

a
∨

exp(λω t)φλ(x) |c(λ)|−2 dλ. (3.8)

satisfy the following properties:

(a) Kt ∈ C (K0\G0/K0) for each t > 0.

(b) K̂t(λ) = exp(λω t) for all λ ∈ a∨.

(c) Kt ∗Ks = Kt+s for all t, s > 0.

(d) For any f ∈ C∞
c , f ∗Kt is a solution to the equation ∂/∂t = ∆X and ‖f ∗Kt‖2 → 0 as t → 0.

Proof. One obtains (b) by taking a spherical transform of the heat equation (3.7). Then (3.8) is obtained
by taking an inverse spherical transform of (b). For further details on the proof, see [12, Proposition 3.1]
and [13, Theorem 1].

3.5 Spherical function on H
n

In this section, we obtain the spherical function on Spn(R)/Un(R) ∼= Hn by using the general procedure
for obtaining spherical functions on Riemannian symmetric spaces via the Flensted-Jensen reduction
established in subsection 3.3. But first we need to specialize the general notation in subsection 3.1 for
the symplectic group in order to have a more explicit structure for these groups and algebras that in turn
is essential for obtaining a more explicit structure for the spherical function and the heat kernel in this
particular case.

The Lie algebras shall as usual be denoted by gothic letters. Let

g0 =

{(
A B
C −At

) ∣∣∣∣ A,B,C ∈ Rn×n, B = Bt, C = Ct

}

denote the real symplectic algebra spn(R), while g shall denote the complex symplectic algebra spn(C) =

g0 +ig0. On g, we have the Cartan involution θ(X) = −Xt
(X ∈ g), which restricts to θ0(X) = −Xt (X ∈

g0) on g0. Accordingly, we have the Cartan decomposition g = u + p of g into the (+1)-eigenspace

u =

{(
A B

−B A

) ∣∣∣∣ A,B ∈ Cn×n, A = −At
, B = Bt

}
.

and the (−1)-eigenspace

p =

{(
A B
B −A

) ∣∣∣∣ A,B ∈ Cn×n, A = A
t
, B = Bt

}
.

of θ. Similarly, we have the Cartan decomposition g0 = k0 + p0 of g0 into the (+1)-eigenspace

k0 =

{(
A B

−B A

) ∣∣∣∣ A,B ∈ Rn×n, A = −At, B = Bt

}
,
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and the (−1)-eigenspace

p0 =

{(
A B
B −A

) ∣∣∣∣ A,B ∈ Rn×n, B = Bt, A = At

}

of θ0.

Remark 3.13. We note here that u is the symplectic unitary algebra u = spn(C) ∩ u2n while k0 is the
symplectic real orthogonal algebra k0 = spn(R) ∩ 02n(R). The subalgebra k = k0 + ik0 is then given by
the symplectic complex orthogonal algebra k = spn(C) ∩ 02n(C).

The maximal abelian subspaces a and a0 of p and p0, respectively, are given by the diagonal elements

in p and p0, respectively. As the elements of p = {X ∈ g |X = X
t} are Hermitian and the elements of

p0 = {X ∈ g0 |X = Xt} are symmetric, the diagonal entries in both p and p0 are real. Therefore, we
have

a = a0 =

{
r =

(
R 0
0 −R

) ∣∣∣∣ R =

( r1 0

. . .
0 rn

)
, rj ∈ R, 1 ≤ j ≤ n

}
.

. As a = a0, we drop the distinction and from here on denote both by a.

The basis of the dual space a∨ shall be denoted by {e1, e2, . . . , en} such that ej(r) = rj (r ∈ a, 1 ≤
j ≤ n). The generic element of a∨ shall be denoted by λ = λ1 e1 + . . .+ λn en (λj ∈ R, 1 ≤ j ≤ n).The
Killing form on g is given by

B(X,Y ) = 2(n+ 1) tr(XY ).

Let Ej,k (1 ≤ j, k ≤ 2n) denote the (2n×2n)-matrix with entry 1 where the j-th row and the k-th column
meet, all other entries being 0. Using this Killing form, we can assign to each basis vector ej (1 ≤ j ≤ n)
in a∨ an element

Hj =
1

4(n+ 1)
(Ej,j − En+j,n+j) ∈ g (1 ≤ j ≤ n),

so that B(Hj , r) = ej(r). This assignment induces a scalar product on a∨ defined by

〈ej , ek〉 := B(Hj , Hk) =
δj,k

4(n+ 1)
.

The roots of g corresponding to a are given by

∆ = {±2ej | 1 ≤ j ≤ n} ∪ {±ej ± ek | 1 ≤ j < k ≤ n},

with each root space gα (α ∈ ∆) having real dimension (and hence root multiplicity) mα = 2. As a = a0,
for roots of g0 corresponding to a0, we have ∆0 = ∆. However, in case of the real algebra g0, each root
space gα

0 (α ∈ ∆0) has real dimension 1. The Weyl group W = W0 consists of the permutations σ : a → a

of elements r ∈ a, i.e.,

σ(r) = σ

(
R 0
0 −R

)
=

(
σ(R) 0

0 −σ(R)

)
where σ(R) = σ

( r1 0

. . .
0 rn

)
=

(±rτ(1) 0

. . .
0 ±rτ(n)

)
(τ ∈ Sn).

Consequently, we have W = Z/nZ × Sn.

The canonical choice of positive roots in ∆ is given by

∆+ = {2ej | 1 ≤ j ≤ n} ∪ {ej + ek | 1 ≤ j < k ≤ n} ∪ {ej − ek | 1 ≤ j < k ≤ n}. (3.9)

Thus, the half-root sum ρ0 = 1/2
∑

α∈∆+ mαα in the real algebra g0 is given by

ρ0 = n e1 + (n− 1) e2 + . . .+ (n− j + 1) ej + . . .+ 2 en−1 + en

and the half-root sum ρ in the complex algebra g is given by ρ = 2 ρ0. Corresponding to the choice (3.9)
of positive roots, the positive Weyl chamber a+ of a is given by

a+ =

{
r =

(
R 0
0 −R

) ∣∣∣∣ R =

( r1 0

.. .
0 rn

)
, r1 ≥ . . . ≥ rj ≥ . . . rn ≥ 0

}
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and the nilpotent algebra n =
∑

α∈∆+ gα is given by

n =

{(
P Q
0 −P t

) ∣∣∣∣ P,Q ∈ Cn×n, P strictly upper-triangular, Q symmetric

}
,

wherefrom n0 =
∑

α∈∆+
0
gα

0 can be obtained by restricting to g0.

Groups shall as usual continue to be denoted by capital Roman letters. In particular, G0 shall
denote the real symplectic group Spn(R), while G shall denote the complex symplectic group Spn(C). By
Remark 3.13, the subgroup K0 = exp(k0) ( G0 is given by the real orthogonal subgroup Spn(R)∩O2n(R)
of Spn(R), while K = exp(k) ( G is given by the complex orthogonal group Spn(C) ∩O2n(C) of Spn(C).
Group elements, i.e., the matrices in the matrix groups shall continue to be denoted by small Roman
letters. The scalar entries of the matrices shall also be denoted by small letters, while matrix-blocks in
matrices written in a block-matrix format shall be denoted by capital letters.

Both real and complex symplectic orthogonal matrices have the same structure

k =

(
A B

−B A

)
(AAt +BBt = 1n , AB

t = BAt),

but while for k ∈ K0 this implies that the matrix A+iB is an (n×n)-unitary matrix, no such implication is
possible in case of complex orthogonal symplectic matrices k ∈ K \K0. However, any complex orthogonal
matrix k ∈ K can be represented as k = k0 kh, where k0 ∈ K0 is a real orthogonal matrix and kh is a
Hermitian orthogonal matrix (see [15, Theorem 1]). Therefore, a general k ∈ K can be represented by

k =

(
A0 B0

−B0 A0

)(
A B

−B A

)

such that A0 + iB0 is (n× n)-unitary and A+ iB is (n× n)-Hermitian.

The group A = exp(a) is given by the group of real diagonal symplectic matrices

A =

{
exp(r) =

(
exp(R) 0

0 exp(−R)

) ∣∣∣∣ R =

( r1 0

. ..
0 rn

)
, rj ∈ R, 1 ≤ j ≤ n

}
. (3.10)

By Remark 3.13, the group U = exp(u) ( G is given by the unitary subgroup U = Spn(C)∩U2n = Sp(n)
of Spn(C), whose elements can be shown to have the structure

U =

{(
A B

−B A

) ∣∣∣∣ A,B ∈ Cn×n, AA
t

+BB
t

= 1n, AB
t = BAt

}
.

The group N = exp(n) ( G is given by

N =

{(
P Q
0 P−t

) ∣∣∣∣ P,Q ∈ Cn×n, P unit upper-triangular, PQt = QP t

}
,

wherefrom N0 = exp(n0) ( G0 can be obtained by restricting to G0.

The Haar measures of the groups shall be denoted by dµ(x), while the Euclidean measures shall be
denoted by dx.

This prepares the setup needed to compute the spherical function on Spn(C) corresponding to λ ∈ a∨

using the formula

Φλ(exp(r)) =
π(ρ)

π(iλ)

∑
σ∈W det(σ) exp(iσλ(r))∑
σ∈W det(σ) exp(σρ(r))

(3.11)

in equation (3.13). The quantity

π(ρ) =
∏

α∈∆+

〈2n e1 + . . .+ 2(n− j + 1) ej + . . .+ 2en , α〉

will come out to be a positive real constant depending only on n. Since we are not interested in the exact
nature of this dependence and keeping track of these constants soon get quite tedious, we shall club all
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such constants which are not crucial to our calculation under the generic symbol cn, which should be
interpreted as a positive real constant depending only on n.

The quantity π(iλ) is of the form

π(iλ) = in
2 ∏

1≤j≤n

2λj

4(n+ 1)

∏

1≤j<k≤n

λj + λk

4(n+ 1)

∏

1≤j<k≤n

λj − λk

4(n+ 1)
.

The above homogeneous polynomial of degree n2 plays a crucial role in our analysis. Let us formally
denote it by

ε(λ) := ε(λ1, λ2, . . . , λn) =
∏

1≤j≤n

λj

∏

1≤j<k≤n

(λj + λk)
∏

1≤j<k≤n

(λj − λk).

Under transpositions σj,k ∈ W given by the assignment

(λ1, .., λj , .., λk, .., λn) 7→ (λ1, .., λk, .., λj , .., λn)

and sign-changes σj ∈ W given by the assignment

(λ1, .., λj , .., λn) 7→ (λ1, ..,−λj , .., λn),

we have σj,k((λj +λk)(λj −λk)) = −(λj +λk)(λj −λk) and σj((λj +λk)(λj −λk)) = (λj +λk)(λj −λk),
respectively. Thus, in both the cases we have ε(σj,k(λ)) = −ε(λ) and ε(σj(λ)) = −ε(λ). Now, since the
Weyl group W is generated by these transpositions and sign-changes, the polynomial ε for any formal
variable λ = (λ1, . . . , λn) satisfies the property

ε(σ(λ)) = det(σ)ε(σ(λ)) (σ ∈ W ). (3.12)

Next we consider the denominator
∑

σ∈W det(σ) exp(σρ(r)) in the right-hand side of the equation (3.11).
As ρ =

∑
α∈∆+ α, this denominator can be expressed in the form

∑

σ∈W

det(σ) exp(σρ(r)) =
∏

α∈∆+

(exp(α(r)) − exp(−α(r))),

whence we obtain
∑

σ∈W

det(σ) exp(σρ(r)) = 2n2 ∏

1≤j≤n

sh(2rj)
∏

1≤j<k≤n

sh(rj + rk)
∏

1≤j<k≤n

sh(rj − rk).

The product of the sh′s on the right-hand side of the formula would also play an important role in our
later analysis. We formally denote it as

δ(r) :=
∏

1≤j≤n

sh(rj)
∏

1≤j<k≤n

sh
(rj + rk

2

) ∏

1≤j<k≤n

sh
(rj − rk

2

)
.

This gives us the formula

Φλ(exp(r)) =
cn

in2

∑
σ∈W det(σ) exp(iσλ(r))

ε(λ) δ(2r)
(3.13)

for the spherical function on Spn(C) corresponding to λ ∈ a∨ at exp(r) ∈ A. An interesting limiting case
of this formula is to determine the spherical function on Spn(C) corresponding to λ = 0 at exp(r) ∈ A,
which we consider in the next proposition.

Proposition 3.14. The spherical function on Spn(C) corresponding to λ = 0 at exp(r) ∈ A is given by
the formula

Φ0(exp(r)) = cn
ε(r)

δ(2r)
= cn

∏

1≤j≤n

rj

sh(2rj)

∏

1≤j<k≤n

rj + rk

sh(rj + rk)

∏

1≤j<k≤n

rj − rk

sh(rj − rk)
,

where cn denotes a constant depending only on n.
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Proof. We begin by defining a polynomial differential operator

ε(∂/∂λ) := ε(∂/∂λ1, . . . , ∂/∂λj , . . . , ∂/∂λn).

Since both the numerator and the denominator in the formula

Φλ(exp(r)) =
cn

in2

∑
σ∈W det(σ) exp(iσλ(r))

ε(λ) δ(2r)

are analytic at λ = 0, the limit at λ → 0 can be calculated as

Φ0(exp(r)) = lim
λ→0

cn

in2

∑
σ∈W det(σ) exp(iσλ(r))

ε(λ) δ(2r)

=
cn

in2 δ(2r)
lim
λ→0

ε(∂/∂λ)
(∑

σ∈W det(σ) exp(iσλ(r))
)

ε(∂/∂λ)ε(λ)
,

provided both the derivatives converge at λ = 0.

Now, since ∂/∂λj(exp(iσλ(r))) = σ(i rj) exp(iσλ(r), it is easy to see that

ε(∂/∂λ) exp(iσλ(r)) = ε(iσ(r)) exp(iσλ(r)),

which, by the property (3.12) of ε, becomes

ε(∂/∂λ) exp(iσλ(r)) = in
2

det(σ) ε(r) exp(iσλ(r)). (3.14)

Thus, the derivative of the numerator by ε(∂/∂λ), in the limit λ → 0, converges to in
2

det(σ)2ε(r)|W | =

in
2

ε(r)2nn!.

For a monomial λα1
1 · · ·λαj

j · · ·λαn
n (αj ∈ N≥0,

∑n
j=1 αj = n2) and a differential operator

(∂/∂λ1)β1 . . . (∂/∂λj)βj . . . (∂/∂λn)βn (βj ∈ N≥0,

n∑

j=1

βj =

n∑

j=1

αj = n2),

we have
(

∂β1

∂λβ1

1

)
· · ·
(

∂βj

∂λ
βj

j

)
· · ·
(

∂βn

∂λβn
n

)
(
λα1

1 · · ·λαj

j · · ·λαn
n

)

=





n∏

j=1

αj(αj + 1)

2
for αj = βj ∀1 ≤ j ≤ n,

0 otherwise.

Therefore it is easy to see that ε(∂/∂λ)ε(λ) is a constant depending only on n and hence we have the
requisite limit stated in the proposition.

Next we apply Theorem 3.10 to calculate the spherical function φλ on G0 = Spn(R) corresponding to
λ ∈ a∨

0 by reducing it to the complex case.

Theorem 3.15. The spherical function φλ on G0 = Spn(R) corresponding to

λ = λ1 e1 + . . .+ λj ej + . . .+ λn en ∈ a∨

at exp(r) =
( exp(R) 0

0 exp(−R)

)
∈ A with

R =




r1 0
. . .

0 rn


 (rj ∈ R≥0, 1 ≤ j ≤ n),
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is given by

φλ(exp(r)) =
cn

in2 τ(λ)

ˆ

k∈K

∑
σ∈W det(σ) exp

(
iσλ(̺(r, k))

)

δ(̺(r, k))
dµ(k), (3.15)

where ̺(r, k) is the diagonal matrix ̺(r, k) =
( P (r,k) 0

0 −P (r,k)

)
with

P (r, k) =




̺1(r, k) 0
. . .

0 ̺n(r, k)


 (̺j(r, k) ∈ R, 1 ≤ j ≤ n)

related to r =
(

R 0
0 −R

)
via the matrix equality k exp(r)k

t
= u exp(̺)ut with k ∈ K and u ∈ U . The

functions τ and δ are given by

τ(λ) =
∏

1≤j≤n

th
(λj

2
π
) ∏

1≤j<k≤n

th
(λj + λk

2
π
) ∏

1≤j<k≤n

th
(λj − λk

2
π
)
,

δ(̺) =
∏

1≤j≤n

sh(̺j)
∏

1≤j<k≤n

sh
(̺j + ̺k

2

) ∏

1≤j<k≤n

sh
(̺j − ̺k

2

)
,

while cn is a positive real constant depending only on n.

Proof. We begin by putting x = exp(r/2) in Theorem 3.10, so that xθ(x)−1 = xxt = exp(r), and we have

φλ(exp(r)) = |c(λ)|2|π0(λ)|2
ˆ

k∈K

Φ2λ(k exp(r/2)) dµ(k) (λ ∈ a∨
0 ), (3.16)

where Φ2λ is the spherical function on the complex group G = Spn(C) corresponding to 2λ ∈ a∨. As
k exp(r/2) ∈ G, from the G = UA+U decomposition of the complex group, we obtain ̺(r, k) ∈ A+ and
u, v ∈ U , so that g = k exp(r/2) = u exp(̺(r, k)/2)v ∈ G. Therefore, we have

ggt = k exp(r)k
t

= u exp(̺(r, k))ut. (3.17)

Furthermore, since the spherical function Φ2λ ∈ C∞(U\G/U) on G is bi-invariant under U , we have

Φ2λ(k exp(r/2)) = Φ2λ(u exp(̺(r, k)/2)v) = Φ2λ(exp(̺(r, k)/2)).

Now, we plug in the formula for Φ2λ(exp(̺(r, k)/2)) in equation (3.16) using the formula (3.13) to obtain

φλ(exp(r)) = cn
|c(λ)|2|π0(λ)|2
in2ε(2λ)

ˆ

k∈K

∑
σ∈W det(σ) exp(iσ2λ(̺(r, k)/2))

δ(̺(r, k))
dµ(k). (3.18)

Now 2λ(̺(r, k)/2) = λ(̺(r, k)), so the numerator inside the integral becomes
∑

σ∈W

det(σ) exp(iσλ(̺(r, k))).

Next ε(2λ) = 2n2

ε(λ) and the positive real constant 2n2

gets assumed within the generic cn. Also, from
the formula

∣∣c(λ)
∣∣−2

=
1

πn2/2

∏

1≤j≤n

λj

2
th
(λj

2
π
) ∏

1≤j<k≤n

λj + λk

2
th
(λj + λk

2
π
)

×

×
∏

1≤j<k≤n

λj − λk

2
th
(λj − λk

2
π
)

for the Harish-Chandra c-function on Spn(R) due to Bhanu Murti mentioned in subsection 3.2, it clearly
follows, that in terms of the special functions ε and τ introduced to make our calculations less cumbersome,
the above formula can be simply written as

∣∣c(λ)
∣∣−2

= cn ε(λ)τ(λ). (3.19)
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Thus, noting that

|π0(λ)|2 =

∣∣∣∣
∏

1≤j≤n

2λj

4(n+ 1)

∏

1≤j<k≤n

λj + λk

4(n+ 1)

∏

1≤j<k≤n

λj − λk

4(n+ 1)

∣∣∣∣
2

= cn ε(λ)2,

we see that |c(λ)|2|π0(λ)|2 = cn(1/τ(λ)), which brings the integral in the right-hand side of equation (3.18)
to

φλ(exp(r)) =
cn

in2 τ(λ)

ˆ

k∈K

∑
σ∈W det(σ) exp(iσλ(̺(r, k)))

δ(̺(r, k))
dµ(k),

thereby proving the theorem.

Remark 3.16. Since the real symplectic matrix exp(r) = (
exp(R) 0

0 exp(−R) ) ∈ A ( G0 = Spn(R) maps

the point i1n ∈ Hn by symplectic action to Z = i exp(2R) ∈ Hn and φλ(exp(r)) ∈ C∞(K0\G0/K0) is
a radial function on Hn, the formula for φλ in the above theorem also gives the formula for spherical
function on Hn at a point Z = k0 i exp(2R) ∈ Hn (k0 ∈ K0) and hence is also denoted by φλ(2R).

3.6 Heat kernel on H
n

In this section, we obtain the heat kernel on Hn by following the general procedure established in
subsection 3.3. We continue with the notation and the basic setup fixed in subsection 3.5.

We begin by computing the eigenvalue λω = −(〈ρ0, ρ0〉0 + 〈λ, λ〉0) for the Casimir operator ω on
G0 = Spn(R). For the basis vectors ej (1 ≤ j ≤ n) in a∨

0 , the inner product induced by the Killing form
of g0 on a∨

0 takes the form

〈ej, ek〉 =
δj,k

4(n+ 1)
(1 ≤ j, k ≤ n).

Then, for the half-root sum

ρ0 = n e1 + (n− 1) e2 + . . .+ (n− j + 1) ej + . . .+ 2 en−1 + en

in g0, the inner product 〈ρ0, ρ0〉0 turns out to be

〈ρ0, ρ0〉0 =
12 + 22 + . . .+ n2

4(n+ 1)
.

Similarly, for λ = λ1e1 + λ2e2 + . . .+ λnen ∈ a∨
0 , we have

〈λ, λ〉0 =
λ2

1 + λ2
2 + . . .+ λ2

n

4(n+ 1)
.

the Casimir operator ω on G0 = Spn(R) descends on the Siegel upper half-space Hn := {Z = X +
iY | X,Y ∈ Rn×n, X = Xt, Y = Y t, Y > 0} to the operator

∆ =
1

(n+ 1)
tr

(
Y

((
Y

∂

∂X

)t
∂

∂X
+

(
Y

∂

∂Y

)t
∂

∂Y

))
.

Traditionally, this factor of 1/(n+ 1) is ignored and the Laplace–Beltrami operator on Hn is written as

∆ = tr

(
Y

((
Y

∂

∂X

)t
∂

∂X
+

(
Y

∂

∂Y

)t
∂

∂Y

))
,

due to which, we correct the value of λω calculated above by multiplying it with a factor of (n + 1),
thereby setting

λω = −
∑n

j=1 j
2 +

∑n
j=1 λ

2
j

4
.

Now we are ready to compute the heat kernel Kt on Hn using Theorem 3.15 and the formula (3.8), which
is the subject of the next theorem.
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Theorem 3.17. The heat kernel Kt at a point Z = k0 i exp(2R) ∈ Hn on the Siegel upper half-space
with k0 ∈ K0 and

R =



r1 0

. . .

0 rn


 (rj ∈ R≥0, 1 ≤ j ≤ n),

is given by

Kt(2R) = cn

exp
(

−∑n
j=1 j

2t/4
)

tn2+n/2

ˆ

k∈K

ε(̺(r, k)) exp
(

−∑n
j=1 ̺j(r, k)2/t

)

δ(̺(r, k))
dµ(k),

where ̺(r, k) is the diagonal matrix ̺(r, k) =
( P (r,k) 0

0 −P (r,k)

)
with

P (r, k) =




̺1(r, k) 0
. . .

0 ̺n(r, k)


 (̺j(r, k) ∈ R, 1 ≤ j ≤ n)

related to r =
(

R 0
0 −R

)
via the matrix equality k exp(r)k

t
= u exp(̺)ut with k ∈ K and u ∈ U . The

functions ε and δ are given by

ε(̺) =
∏

1≤j≤n

̺j

∏

1≤j<k≤n

(̺j + ̺k)
∏

1≤j<k≤n

(̺j − ̺k),

δ(̺) =
∏

1≤j≤n

sh(̺j)
∏

1≤j<k≤n

sh
(̺j + ̺k

2

) ∏

1≤j<k≤n

sh
(̺j − ̺k

2

)
,

while cn is a positive real constant depending only on n.

Proof. In Theorem 3.15, we had calculated the spherical function φλ corresponding to

λ = λ1 e1 + . . .+ λj ej + . . .+ λn en ∈ a∨

at Z = k0 i exp(2R) as

φλ(2R) =
cn

in2 τ(λ)

ˆ

k∈K

∑
σ∈W det(σ) exp(iσλ(̺(r, k)))

δ(̺(r, k))
dµ(k),

Therefore, using the formula (3.8), we have

Kt(2R) =
cn

in2 exp
(

−
n∑

j=1

j2t/4
) ˆ

k∈K

I(̺(r, k))

δ(̺(r, k))
dµ(k) (3.20)

where the function I(̺(r, k)) given by the integral

I(̺(r, k)) =
∑

σ∈W

det(σ)

ˆ

λ∈a
∨

|c(λ)|−2

τ(λ)
exp

(
−

n∑

j=1

λ2
j t/4 + iσλ(̺(r, k))

)
dλ.

As we noted in equation (3.19), the quantity |c(λ)|−2/τ(λ) is just the polynomial cnε(λ), where cn is a
positive real constant depending only on n . So our integral simply becomes

I(̺(r, k)) = cn

∑

σ∈W

det(σ)

ˆ

λ∈a
∨

ε(λ) exp
(

−
n∑

j=1

λ2
j t/4 + iσλ(̺(r, k))

)
dλ.

Also, as in Proposition 3.14, we had noted in equation (3.14) that for the polynomial differential operator
ε(∂/∂λ) := ε(∂/∂λ1, . . . , ∂/∂λj, . . . , ∂/∂λn) we have

ε(∂/∂λ) exp
(
iσλ(̺(r, k))

)
= in

2

det(σ) ε(̺(r, k)) exp
(
iσλ(̺(r, k))

)
,
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the integral I(̺(r, k)) reduces to calculating the derivative by ε(∂/∂λ) of the integral

I0(̺(r, k)) =
∑

σ∈W

ˆ

λ∈a
∨

exp
(

−
n∑

j=1

λ2
j t/4 + iσλ(̺(r, k))

)
dλ

as we have cn ε(∂/∂λ)I0(̺(r, k)) = in
2

I(̺(r, k)). This last integral splits into integrals over the individual
λj-s (1 ≤ j ≤ n) as

I0(̺(r, k)) =
∑

σ∈W

n∏

j=1

∞̂

λj=−∞

exp
(

− λ2
j t/4 + iλjσ(̺(r, k))

)
dλj .

But as we saw before, these individual integrals over λj-s are simply

∞̂

λj=−∞

exp
(

− λ2
j t/4 + iλjσ(̺(r, k))

)
dλ =

2
√
π exp

(
− σ(̺(r, k))2/t

)
√
t

.

Therefore, their product over 1 ≤ j ≤ n becomes

n∏

j=1

∞̂

λj =−∞

exp
(

− λ2
j t/4 + iλjσ(̺(r, k))

)
dλj =

(2
√
π)n

tn/2
exp

(
−

n∑

j=1

σ(̺(r, k))2/t
)
.

However, as we have
∑n

j=1 σ(̺(r, k))2 =
∑n

j=1 ̺j(r, k)2, the integral I0(̺(r, k)) evaluates to give

I0(̺(r, k)) =
cn

tn/2
exp

(
−

n∑

j=1

̺j(r, k)2/t
)
.

Therefore, we have

I(̺(r, k)) =
cn

in2 ε(∂/∂λ)I0(̺(r, k)) =
cn

in2tn/2
ε(−̺(r, k)/t) exp

(
−

n∑

j=1

̺j(r, k)2/t
)
.

Now as ε is a homogeneous polynomial of order n2, we have

I(̺(r, k)) =
cn i

n2

tn2+n/2
ε(̺(r, k)) exp

(
−

n∑

j=1

̺j(r, k)2/t
)
.

Putting this back to equation (3.20), we have the theorem.

3.7 weight-κ correction

We continue with the notation in subsections 3.5 and 3.6. Given a function f : G0/K0 → C and g ∈ G0

define the function fg : G0/K0 → C by fg(x) := f(g−1x) (x ∈ X = G0/K0).

As the spherical function on X is supposed to be invariant under the left action f 7→ fg (g ∈ G0) of
the elements of K0 on the functions f : X → C, it is constructed by having an eigenfunction u of the
invariant differential operators D ∈ D(G0/K0) acted upon by elements k0 ∈ K0 and then integrating
over K0 to produce an eigenfunction φ(x) =

´

k0∈K0
uk0 (x) dµ(k0) of D ∈ D(G0/K0) that is invariant

under the action f 7→ fk0 (k0 ∈ K0) of the elements of K0. This is called the method of images and this is
basically how one obtains Harish-Chandra’s characterization of the spherical function on the symmetric
space G0/K0 as the integral (3.2).

However, the action f 7→ fg (g ∈ G0) of the elements of G0 on the functions f : X → C of X that we
have considered in this process is the one that is normally considered in case of group actions, i.e., the
action f 7→ fg (g ∈ G0) of the elements of G0 on the functions f : X → C, where fg : X → C is given by
the assignment x 7→ f(g−1x). One can instead introduce a weight factor, i.e., a function j : G0 ×X → C

satisfying

j(g1 g2, x) = j(g1, g2x) j(g2, x) (3.21)
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and consider the action f 7→ fg
j (h ∈ G0) of the elements of G0 on the functions f : X → C, where

fg
j : X → C is given instead by the assignment x 7→ j(g−1, x)f(g−1x). Then, to compute a spherical

function φj , i.e., an eigenfunction of the invariant differential operators D ∈ Dj(G0/K0) that is invariant
under this action of the elements of K0, we must have an eigenfunction uj of D ∈ Dj(G0/K0) acted upon
by this action of the elements of K0 and then integrate over K0 to produce

φj(x) =

ˆ

k0∈K0

j(k0
−1, x)uj(k0

−1x) dµ(k0).

In subsection 2.5, we had considered one such weighted action of symplectic matrices due to Maaß
and obtained a Laplacian invariant under this action. As we eventually want to construct the heat kernel
for this weight-κ Siegel–Maaß Laplacian ∆(κ), in this section we adapt the computation of the spherical
function and the heat kernel on Hn in subsections 3.5 and 3.6 for the weight-κ case.

As introduced in (2.13), the weight-κ action of a real symplectic matrix g ∈ G0 = Spn(R) on functions
f : Hn → C on Hn is given by

f g−1

(Z) = jκ(g, Z)f(g Z) (g ∈ G0, Z ∈ Hn), (3.22)

where the weight-factor jκ(g, Z) is given by

jκ(g, Z) =

(
det(CZ +D)

det(CZ +D)

)κ/2 (
g =

(
A B
C D

)
∈ Spn(R), Z ∈ Hn

)
.

It is easy to check that the weight-factor jκ satisfies the property (3.21).

The functions f : Hn → C on Hn can be lifted to functions f̃ : Spn(R) → C defined by

f̃(g) := jκ(g, i1n) f(g i1n).

There is a one-to-one correspondence between the functions on f : Hn → C on Hn that satisfy

f(Z) = jκ(g′, Z)f(g′Z) (Z = g i1n ∈ Hn)

for some g′ ∈ G0 and the functions f̃ : G0 → C on G0 that satisfy

(i) f̃(g′ g) = f̃(g) for all g ∈ G0

(ii) f̃(g k0) = jκ(k0, i1n)f̃(g) for all g ∈ G0 and k0 ∈ K0.

Therefore, to compute the weight-κ spherical function on Hn, we need to integrate over the action

f̃ k−1
0 (g) = jκ(k0, i1n)−1f̃(k0 g)

of K0 on G0, which takes the explicit form

f̃ k−1
0 (g) =

(
det(A+ iB)

det(A− iB)

)κ/2

f̃(k0 g)

(
k0 =

(
A B

−B A

)
∈ K0, g ∈ Spn(R)

)

when we write k0 in the familiar block-matrix form for symplectic matrices.

However, this lifts the weight-κ action of G0 on Hn to G0, while as our computation of the spherical
function, made by reducing it to the complex case, takes place in the complex group G, we need to
determine this action in G. As in the complex reduction method, we consider the Lie algebra g = g0 + ig0

of G as a real Lie algebra, its elements are canonically embedded in the space of (4n× 4n)-real matrices
as

X 7→
(

Re(X) Im(X)
− Im(X) Re(X)

)
(X ∈ g).

Therefore, the elements of G are also canonically embedded in the space of (4n× 4n)-real matrices as

g = exp(X) 7→
(

Re(g) Im(g)
− Im(g) Re(g)

)
(g ∈ G).
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Accordingly, the element i1n ∈ Hn, under this canonical embedding of (n × n)-complex matrices into
(2n× 2n)-real matrices takes the form

i1n 7→
(

0 1n

−1n 0

)
= Jn.

This gives us the weight-κ action of K on the functions f̃ : G → C on G as

f̃ k−1

(g) = jκ(k, Jn)f̃(k g) (k ∈ K, g ∈ Spn(C)),

where the weight-factor jκ is of the form

jκ(k, Jn) =

(
det(Re(k) + Im(k)Jn)

det(Re(k) − Im(k)Jn)

)κ/2

Now writing k ∈ K as k = k0 kh, where k0 is real orthogonal and kh is Hermitian orthogonal, by the
property (3.21) of jκ, we have jκ(k, Jn) = jκ(k0, khJn)jκ(kh, Jn). Since k0 is real orthogonal, Im(k0) = 0
so that jκ(k0, khJn) = 1, thereby giving jκ(k, Jn) = jκ(kh, Jn).

To calculate jκ(kh, Jn) more explicitly, we need to write kh in the block-diagonal form

kh =

(
A B

−B A

)
(AAt +BBt = 1n, AB

t = BAt, A = A
t
, B = −Bt

).

The matrix h := A + iB is obviously (n × n)-Hermitian. The orthogonality condition AAt + BBt =
1n, AB

t = BAt can be restated as

(A+ iB)(At − iBt) = 1n,

so that, we have A− iB = h−t. As h is Hermitian, this also implies that A− iB = h
−1

. Then to calculate
det(Re(k) + Im(k)Jn) explicitly, we have

det(Re(k) + Im(k)Jn)

= det

[(
1
2 (A+A) 1

2 (B +B)

− 1
2 (B +B) 1

2 (A+A)

)
+

(
− i

2 (A−A) − i
2 (B −B)

i
2 (B −B) − i

2 (A−A)

)(
0 1n

−1n 0

)]

= det

[(
1
2 ((A+ iB) + (A− iB)) − i

2 ((A + iB) − (A− iB))
i
2 ((A+ iB) − (A− iB)) 1

2 ((A+ iB) + (A− iB))

)]
,

whence using the relations

A+ iB = h, A− iB = h
−1
, A+ iB = h−1, A− iB = h, (3.23)

it follows that

det(Re(k) + Im(k)Jn) = det

[(
1
2 (h+ h) − i

2 (h− h)
i
2 (h− h) 1

2 (h+ h)

)]

= det

[(
Re(h) Im(h)

− Im(h) Re(h))

)]
.

Now, since for any two (n× n) real matrices X, Y , we have

det

[(
X Y

−Y X

)]
= det(X) det(X + Y X−1Y ) = | det(X + iY )|2,

we have here det(Re(k) + Im(k)Jn) = | det(h)|2 and similarly, det(Re(k) − Im(k)Jn) = | det(h−1)|2,
thereby giving

jκ(k, Jn) = jκ(kh, Jn) = det(h)2κ

(
kh =

(
A B

−B A

)
, h = A+ iB, h hermitian

)
.

To obtain the weight-κ spherical function on Hn, we need only to multiply the integrand in equation (3.15)
in Theorem 3.15 with this weight-factor corresponding to k ∈ K. We restate this result as a theorem for
future reference.

29



Theorem 3.18. The spherical function φ
(κ)
λ on the Siegel upper half-space Hn for the weight-κ action

fg−1

(Z) =

(
det(CZ +D)

det(CZ +D)

)κ/2

f(g Z)

(
g =

(
A B
C D

)
∈ Spn(R), Z ∈ Hn

)
,

of the symplectic matrices g ∈ Spn(R) on the functions f : Hn → C, corresponding to

λ = λ1 e1 + . . .+ λj ej + . . .+ λn en ∈ a∨

at Z = k0 i exp(2R) with k0 ∈ K0 and

R =



r1 0

. . .

0 rn


 (rj ∈ R≥0, 1 ≤ j ≤ n),

is given by

φ
(κ)
λ (2R) =

cn

in2 τ(λ)

ˆ

k∈K

∑
σ∈W det(σ) exp(iσλ(̺(r, k)))

δ(̺(r, k))
det(h(k))2κ dµ(k), (3.24)

where h(k) = A + iB is the Hermitian matrix obtained from the decomposition of k ∈ K into real
orthogonal k0 ∈ K0 and Hermitian orthogonal

kh =

(
A B

−B A

)
(AAt +BBt = 1n, AB

t = BAt, A = A
t
, B = −Bt

)

as k = k0 kh and ̺(r, k) is the diagonal matrix ̺(r, k) =
( P (r,k) 0

0 −P (r,k)

)
with

P (r, k) =



̺1(r, k) 0

. . .

0 ̺n(r, k)


 (̺j(r, k) ∈ R, 1 ≤ j ≤ n)

related to r =
(

R 0
0 −R

)
via the matrix equality k exp(r)k

t
= u exp(̺)ut with k ∈ K and u ∈ U . The

functions τ and δ are given by

τ(λ) =
∏

1≤j≤n

th
(λj

2
π
) ∏

1≤j<k≤n

th
(λj + λk

2
π
) ∏

1≤j<k≤n

th
(λj − λk

2
π
)
,

δ(̺) =
∏

1≤j≤n

sh(̺j)
∏

1≤j<k≤n

sh
(̺j + ̺k

2

) ∏

1≤j<k≤n

sh
(̺j − ̺k

2

)
,

while cn is a positive real constant depending only on n.

The Siegel-Maaß Laplacian ∆(κ) is invariant under the weight-κ action (3.22) of the symplectic group.
This is due to the fact that the Casimir operator ω ∈ Ug0 descends under this action to the ∆(κ). The
only part in our computation of the heat kernel where the action of the group G0 on functions on G0/K0

played a role was in the computation of the spherical function in subsection 3.3, which was done by
integrating over the action of the complex orthogonal group K on the spherical function for the complex
group G. Therefore, to construct the heat kernel for the Laplacian ∆(κ) on Hn (n ∈ N≥1), we only need
to adapt the formula for the spherical function by suitably altering the action of the group K on the
spherical function ΦΛ for the complex group G, which was done in Theorem 3.18 by multiplying the
integrand in equation (3.15) in Theorem 3.15 with a weight-factor det(h(k))−2κ, where h(k) = A + iB
is the Hermitian matrix obtained from the decomposition of k ∈ K into real orthogonal k0 ∈ K0 and
Hermitian orthogonal

kh =

(
A B

−B A

)
(AAt +BBt = 1n, AB

t = BAt, A = A
t
, B = −Bt

)

as k = k0 kh. To obtain a more explicit bound for the heat kernel on Hn corresponding to ∆(κ), we need
a bound for this factor det(h(k)) in terms of the diagonal matrices ̺ and r, which is what we undertake
next.
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Lemma 3.19. Let A be a (n×n)-Hermitian matrix. Let eigenvalues of A be labeled according to increasing
size:

λmin(A) = λ1(A) ≤ . . . ≤ λn(A) = λmax(A)

Let r be an integer with 1 ≤ r ≤ n, and let Ar denote any (r × r)-principal submatrix of A obtained by
deleting n− r rows and the corresponding n− r columns from A. For each integer k such that 1 ≤ k ≤ r,
we have

λk(A) ≤ λk(Ar) ≤ λk+n−r(A)

Proof. See [31, p. 189, Theorem 4.3.15]

Theorem 3.20. Let k ∈ K be a complex symplectic orthogonal matrix and h(k) = A+iB be the Hermitian
matrix obtained from the decomposition of k into real orthogonal k0 ∈ K0 and Hermitian orthogonal

kh =

(
A B

−B A

)
(AAt +BBt = 1n, AB

t = BAt, A = A
t
, B = −Bt

)

as k = k0 kh. Let R be the diagonal matrix

R =



r1 0

. . .

0 rn


 (rj ∈ R≥0, 1 ≤ j ≤ n)

and r =
(

R 0
0 −R

)
. Let u exp(̺)ut = k exp(r)k

t
be the eigendecomposition of the Hermitian matrix

k exp(r)k
t

with u ∈ U unitary symplectic and ̺(r, k) the diagonal matrix ̺(r, k) =
( P (r,k) 0

0 −P (r,k)

)
with

P (r, k) =



̺1(r, k) 0

. . .

0 ̺n(r, k)


 (̺j(r, k) ∈ R, 1 ≤ j ≤ n).

Then det(h(k)) is bounded above by

det(h(k)) ≤
exp(

∑n
j=1 |̺j |)

n∏
j=1

ch(rj)
.

Proof. Let l be the (2n× 2n)-matrix

l =
1 − i

2

(
1n −i1n

1n i1n

)
. (3.25)

It is easy to check that l is a symplectic unitary matrix, whose inverse is given by

l−1 = l
t

=
1 + i

2

(
1n 1n

i1n −i1n

)
.

Also let the symplectic real orthogonal k0 and Hermitian orthogonal kh be of the forms

k0 =

(
A0 B0

−B0 A0

)
and kh =

(
A B

−B A

)
,

respectively. Then multiplying the matrix k exp(r)k
t

= k0 kh exp(r) kh k
t
0 from the left by l and from the

right by l−1, and writing the product as

l(k exp(r)k
t
)l−1 = (l k0 l

−1)(l kh l
−1)(l exp(r) l−1)(l kh l

−1)(l kt
0 l

−1),
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in the block decomposed form, we have

l(k exp(r)k
t
)l−1 =

(
A0+iB0 0

0 A0−iB0

)(
A+iB 0

0 A−iB

)( ch(R) sh(R)
sh(R) ch(R)

)(
A+iB 0

0 A−iB

)(At
0−iBt

0 0

0 At
0+iBt

0

)
.

Since k0 ∈ K0 is real orthogonal, we know that the matrix w := A0 + iB0 is unitary. By the hypothesis of

the theorem, h = A+iB is Hermitian. In that case, in equation (3.23), we noted that A−iB = h
−1

= h−t.
With these notations, the above matrix equation becomes

l(k exp(r)k
t
)l−1 =

(
wh ch(R)hwt w h sh(R)h−twt

wh−t sh(R)hwt wh−t ch(R)h−t wt

)
.

Note, that the determinant of the (1, 1)-block of the above matrix is det(h)2 det( ch(R)).

Now coming to the other side of the matrix equation u exp(̺)ut = k exp(r)k
t
, as l is symplectic

unitary, the matrix s = l u is also unitary. Writing s in the block decomposed form

s =

(
A B

−B A

)
,

we write the matrix l(u exp(̺)ut)l−1 = s exp(̺)st as

s exp(̺)st =

(
A B

−B A

)(
exp(P ) 0

0 exp(−P )

)(
A

t −Bt

B
t

At

)

=

(
A exp(P )A

t
+B exp(−P )B

t −A exp(P )Bt +B exp(−P )At

−B exp(P )A
t

+A exp(−P )B
t

B exp(P )Bt +A exp(−P )At

)

Comparing the determinant of the (1,1)-block of this matrix with that of l(k exp(r)k
t
)l−1, we have

det(h)2 det( ch(R)) = det(A exp(P )A
t

+B exp(−P )B
t
).

Let us denote by m the (2n× 2n)-Hermitian matrix s exp(̺)st, and by M its (n×n)-principal submatrix

M := A exp(P )A
t

+B exp(−P )B
t
.

Now, m being a (2n× 2n)-Hermitian matrix with eigenvalues exp(±̺1), . . . , exp(±̺n) and M being the
(n× n)-principal submatrix of m, by Lemma 3.19, we have

λk(m) ≤ λk(M) ≤ λn+k(m) (1 ≤ k ≤ n),

which implies

λ1(m) · · ·λn(m) ≤ det(M) ≤ λn+1(m) · · ·λ2n(m).

The n largest eigenvalues of m are exp(|̺1|), . . . , exp(|̺n|), and The n smallest eigenvalues of m are
exp(−|̺1|), . . . , exp(−|̺n|). Therefore, we have

λ1(A) · · ·λn(A) = exp
(

−
n∑

j=1

|̺j |
)

and λn+1(A) · · ·λ2n(A) = exp
( n∑

j=1

|̺j |
)
,

from where it follows that

exp
(

−
n∑

j=1

|̺j |
)

≤ det(M) ≤ exp
( n∑

j=1

|̺j |
)
,

thereby proving the requisite determinant-inequality.

This of course provides a very useful upper bound on the heat kernel corresponding to the Siegel–Maaß
Laplacian ∆(κ), which we state as the next theorem.
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Theorem 3.21. Let K
(κ)
t denote the heat kernel at a point Z = k0 i exp(2R) ∈ Hn corresponding to the

Siegel–Maaß Laplacian ∆(κ) of weight κ on the Siegel upper half-space with k0 ∈ K0 and

R =




r1 0
. . .

0 rn


 (rj ∈ R≥0, 1 ≤ j ≤ n).

Then, subject to the above conjecture, K
(κ)
t is bounded above by

K
(κ)
t (2R) ≤ cn

exp
(
−∑n

j=1 j
2t/4

)

tn2+n/2

ˆ

k∈K

ε(̺(r, k)) exp
(
−∑n

j=1

(
̺j(r, k)2/t− κ|̺j(r, k)|

))

δ(̺(r, k))
∏n

j=1 chκ(rj)
dµ(k),

where ̺(r, k) is the diagonal matrix ̺(r, k) =
( P (r,k) 0

0 −P (r,k)

)
with

P (r, k) =




̺1(r, k) 0
. . .

0 ̺n(r, k)


 (̺j(r, k) ∈ R, 1 ≤ j ≤ n)

related to r =
(

R 0
0 −R

)
via the matrix equality k exp(r)k

t
= u exp(̺)ut with k ∈ K and u ∈ U . The

functions ε and δ are given by

ε(̺) =
∏

1≤j≤n

̺j

∏

1≤j<k≤n

(̺j + ̺k)
∏

1≤j<k≤n

(̺j − ̺k),

δ(̺) =
∏

1≤j≤n

sh(̺j)
∏

1≤j<k≤n

sh
(̺j + ̺k

2

) ∏

1≤j<k≤n

sh
(̺j − ̺k

2

)
,

while cn is a positive real constant depending only on n.

Proof. Follows immediately from Theorems 3.18, 3.17 and 3.20

4 Sup-norm bounds on average

Let K
(κ)
t (R(Z,W )) (Z,W ∈ Hn) denote the heat kernel on Hn, where R(Z,W ) is the matrix

R(Z,W ) =



r1(Z,W ) 0

. . .

0 rn(Z,W )


 (rj(Z,W ) ∈ R, 1 ≤ j ≤ n),

with the entries rj(Z,W ) (1 ≤ j ≤ n) of R(Z,W ) related to the eigenvalues ρj(Z,W ) (1 ≤ j ≤ n) of the
cross-ratio matrix (see subsection 2.1)

ρ(Z,W ) = (Z −W )(Z −W )−1(Z −W )(Z −W )−1 (Z,W ∈ Hn)

by the relation

exp(2rj(Z,W )) =
1 +

√
ρj(Z,W )

1 −
√
ρj(Z,W )

(1 ≤ j ≤ n).

Then the heat kernel K
(κ,Γ)
t on Γ\Hn is given by the Γ-periodization

K
(κ,Γ)
t (Z,W ) :=

∑

γ∈Γ

det

(
Z − γW

γW − Z

)κ/2

det

(
CW +D

CW +D

)κ/2

K
(κ)
t (2R(Z, γW )).
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We write K
(κ,Γ)
t (Z) := K

(κ,Γ)
t (Z,Z) and Rγ(Z) := R(Z, γZ) with entries

Rγ(Z) =




rγ
1 (Z) 0

. . .

0 rγ
n(Z)


 (rγ

j (Z) ∈ R, 1 ≤ j ≤ n).

Since ∆(κ) is symmetric, it extends to an essentially self-adjoint linear operator acting on a dense

subspace of Hn
κ(Γ). Therefore the heat kernel K

(κ,Γ)
t (Z,W ) has a spectral decomposition

K
(κ,Γ)
t (Z,W ) =

∞∑

j=1

exp(−λjt)ϕλj
(Z)ϕλj

(W )

+
∑

P∈C

cP

ˆ

λ∈a
∨

P

exp(−(〈ρP , ρP〉 + 〈λ, λ〉)t) EP(Z, ρP + iλ) EP(W,ρP + iλ) dλ (4.1)

converging absolutely and uniformly on compacta for t > 0. The discrete part of the spectrum given by
the first sum runs over the eigenvalues λj of the Siegel–Maaß Laplacian ∆(κ) with eigenfunctions ϕλj

.
The continuous part of the spectrum given by the second sum runs over the set C of inequivalent chains of
rational boundary components of M with cP denoting a positive constant depending on the cusp P ∈ C,
aP the Lie algebra of the diagonal component AP of P , ρP the half-sum of positive roots with multiplicity
in aP and EP the Eisenstein series attached to the cusp P . Setting Z = W in equation (4.1), we obtain

K
(κ,Γ)
t (Z) =

∞∑

j=1

exp(−λjt) |ϕλj
(Z)|2 +

∑

P∈C

cP

ˆ

λ∈a
∨

P

exp(−(〈ρP , ρP〉 + 〈λ, λ〉)t) |EP (Z, ρP + iλ)|2 dλ

Now, let κ ≥ n+ 1 and multiply both sides of the above equation by exp((nκ/4)((n+ 1) − κ)t). Then

nκ

4
((n+ 1) − κ) − 〈ρF , ρF 〉 − 〈λ, λ〉 < 0.

Also, since λj ≥ (nκ/4)((n+ 1) − κ) by Theorem 2.26, we have

nκ

4
((n+ 1) − κ) − λj ≤ 0.

Therefore, on taking limit t → ∞ on both sides of the above equation, on the right-hand side only
the ϕλj

’s corresponding to λj = (nκ/4)((n + 1) − κ) survive. By Theorem 2.26, these are of the form

ϕλj
(Z) = det(Y )κ/2fj(Z). Therefore, we have

lim
t→∞

exp
(

− nκ

4
(κ− (n+ 1)) t

)
K

(κ,Γ)
t (Z) =

d∑

j=1

(det Y )κ|fj(Z)|2 (κ > (n+ 1)), (4.2)

where d = dim(Sn
κ (Γ)) and {fj}1≤j≤d is an orthonormal basis of Sn

κ (Γ) with respect to the Petersson
inner product. We denote

SΓ
κ (Z) :=

d∑

j=1

det(Y )κ|fj(Z)|2 (Z ∈ Hn).

Thus, we have

SΓ
κ (Z) = lim

t→∞
exp

(
− nκ

4
(κ− (n+ 1)) t

)
K

(κ,Γ)
t (Z). (4.3)

Since the function exp(−nκ(κ− (n+ 1)) t/4)K
(κ,Γ)
t (Z) is monotonically decreasing for any t > 0, we also

have

SΓ
κ (Z) ≤ exp

(
− nκ

4
(κ− (n+ 1)) t

)
K

(κ,Γ)
t (Z).
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Further, as

∣∣∣∣∣ det

(
Z − γZ

γZ − Z

)κ/2

det

(
CZ +D

CZ +D

)κ/2
∣∣∣∣∣ = 1,

this also implies that for any t > 0 and Z ∈ Hn, we have

SΓ
κ (Z) ≤ exp

(
− nκ

4
(κ− (n+ 1)) t

)∑

γ∈Γ

K
(κ)
t (2Rγ(Z)). (4.4)

4.1 Sup-norm bounds in the cocompact setting

Note that, to make the calculations less cumbersome, we continue clubbing all positive real constants
depending only on n under the generic symbol cn.

Lemma 4.1. Let G denote the complex symplectic group Spn(C), K ( G denote the complex orthogonal
group K = {k ∈ G | kkt = 12n} and X = G/U denote the symmetric space X = {x = ggt | g ∈ G}.

Then the invariant volume form dµ(x) on X in the coordinates x = k exp(r)k
t
(x ∈ X), where r is given

by the diagonal matrix r =
(

R 0
0 −R

)
with

R =



r1 0

. . .

0 rn


 (rj ∈ R, 1 ≤ j ≤ n),

is given by

dµ(x) = cn |δ(2r)|
n∧

j=1

drj ∧ dµ(k),

where dµ(k) denotes the Haar measure on K, δ(r) denotes the function

δ(r) =
∏

1≤j≤n

sh(rj)
∏

1≤j<k≤n

sh
(rj + rk

2

) ∏

1≤j<k≤n

sh
(rj − rk

2

)

on R and cn is a constant depending only on n.

Proof. The tangent space of X = G/U at identity is given by the space p of real dimension n(2n + 1).
Therefore, to calculate the invariant volume form dµ(x) at x ∈ X = G/U , we first calculate the invariant
matrix differential form x−1 dx ∈ p∨. Then, for a choice of dual basis e1, . . . , ej , . . . , en(2n+1) of p∨, we
have

x−1 dx = ω1(x)e1 + . . .+ ωj(x)ej + . . .+ ωn(2n+1)(x)en(2n+1),

where each ωj(x) (1 ≤ j ≤ n(2n + 1)) is a real 1-form. The volume form dµ(x), denoted by [x−1 dx] is
then obtained by taking the wedge product

[x−1 dx] = ω1(x) ∧ · · ·ωj(x) · · · + ωn(2n+1)(x).

From x = k exp(r)k
t
(x ∈ X), one obtains

x−1 dx = ke−rkt dkerk
t

+ k drk
t

+ k dk
t

= ke−r/2
(
e−r/2(kt dk)er/2 + er/2(dr)e−r/2 + er/2(dk

t
k)e−r/2

)
er/2k

t
.

Then taking volume form, denoted by the parentheses [ · ], on both sides, we have

dµ(x) = [x−1 dx] = [e−r/2(kt dk)er/2 + er/2(dr)e−r/2 + er/2(dk
t
k)e−r/2]. (4.5)

35



Now, as the invariant differential form kt dk has the structure of the elements of the complex orthogonal
Lie algebra k, we take

kt dk =

(
A B

−B A

)
(A,B ∈ Cn×n, A = −At, B = Bt).

Then the form dk
t
k = kt dk

t
is given by

dk
t
k =

(
A

t −Bt

B
t

A
t

)
=

(
−A −B
B −A

)
.

Then writing the right-hand side of equation (4.5) in block decomposed form, we have

dµ(x) =

[(
e−R/2 0

0 eR/2

)(
A B

−B A

)(
eR/2 0

0 e−R/2

)

+

(
eR/2 0

0 e−R/2

)(
−A −B
B −A

)(
e−R/2 0

0 eR/2

)
+

(
dR 0
0 − dR

)]

=

[(
e−R/2AeR/2 − eR/2Ae−R/2 e−R/2Be−R/2 − eR/2BeR/2

−eR/2BeR/2 + e−R/2Be−R/2 eR/2Ae−R/2 − e−R/2AeR/2

)
+

(
dR 0
0 − dR

)]
.

Now, writing the matrices A and B as

A =
(
αj,k = ξj,k + iηj,k

)
1≤j,k≤n

(
αj,j = 0, αk,j = −αj,k (1 ≤ j < k ≤ n)

)
,

B =
(
βj,k = ωj,k + iτj,k

)
1≤j,k≤n

(
βk,j = βj,k (1 ≤ j ≤ k ≤ n)

)
,

where ξj,k, ηj,k, ωj,k, τj,k are real 1-forms, one obtains

(
e−R/2AeR/2 − eR/2Ae−R/2

)
j,k

=e(rk−rj)/2(ξj,k + iηj,k) − e(rj−rk)/2(ξj,k − iηj,k)

= − 2 sh
(rj − rk

2

)
ξj,k + 2i ch

(rj − rk

2

)
ηj,k (1 ≤ j < k ≤ n)

and similarly

(
eR/2Ae−R/2 − e−R/2AeR/2

)
j,k

= 2 sh
(rj − rk

2

)
ξj,k + 2i ch

(rj − rk

2

)
ηj,k (1 ≤ j < k ≤ n),

(
e−R/2Be−R/2 − eR/2BeR/2

)
j,k

=−2 sh
(rj + rk

2

)
ωj,k + 2i ch

(rj + rk

2

)
τj,k (1 ≤ j ≤ k ≤ n),

(
eR/2BeR/2 − e−R/2Be−R/2

)
j,k

= 2 sh
(rj + rk

2

)
ωj,k + 2i ch

(rj + rk

2

)
τj,k (1 ≤ j ≤ k ≤ n).

Now taking wedge product of the above entries, it easily follows that

dµ(x) = cn |δ(2r)|
n∧

j=1

drj

∧

1≤j<k≤n

(ξj,k ∧ ηj,k)
∧

1≤j≤k≤n

(ωj,k ∧ τj,k),

whence, identifying

dµ(k) =
∧

1≤j<k≤n

(ξj,k ∧ ηj,k)
∧

1≤j≤k≤n

(ωj,k ∧ τj,k)

we have the result stated in the lemma.

Lemma 4.2. Let G denote the complex symplectic group Spn(C), U ( G denote the symplectic unitary
group U = {u ∈ G | uut = 12n} and X = G/U denote the symmetric space X = {x = ggt | g ∈ G}.
Then the invariant volume form dµ(x) on X in the coordinates x = u exp(̺)ut (x ∈ X), where ̺ is given
by the diagonal matrix ̺ =

(
P 0
0 −P

)
with

P =



̺1 0

. . .

0 ̺n


 (̺j ∈ R, 1 ≤ j ≤ n),
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is given by

dµ(x) = cn δ(̺)2
n∧

j=1

d̺j ∧ dµ(u),

where dµ(u) denotes the Haar measure on U , δ(̺) denotes the function

δ(̺) =
∏

1≤j≤n

sh(̺j)
∏

1≤j<k≤n

sh
(̺j + ̺k

2

) ∏

1≤j<k≤n

sh
(̺j − ̺k

2

)

on P and cn is a constant depending only on n.

Proof. Proceeding as in the proof of Lemma 4.1, from x = u exp(̺)ut, one obtains

x−1 dx = ue−̺ut due̺ut + u d̺ut + u dut

= ue−̺/2
(
e−̺/2(ut du)e̺/2 + e̺/2(dρ)e−̺/2 + e̺/2(dutu)e−̺/2

)
e̺/2ut.

Then taking volume form, denoted by the parentheses [ · ], on both sides, we have

dµ(x) = [x−1 dx] = [e−̺/2(ut du)e̺/2 + e̺/2(dρ)e−̺/2 + e̺/2(dutu)e−̺/2]. (4.6)

Now, as the invariant differential form ut du has the structure of the elements of the unitary symplectic
Lie algebra u, we take

ut du =

(
A B

−B A

)
(A,B ∈ Cn×n, A

t
= −A, B = Bt).

Also, from utu = 12n it follows that that dutu = −ut du. Then writing the right-hand side of equation (4.6)
in block decomposed form, we have

dµ(x) =

[(
e−P/2 0

0 eP/2

)(
A B

−B A

)(
eP/2 0

0 e−P/2

)

−
(
eP/2 0

0 e−P/2

)(
A B

−B A

)(
e−P/2 0

0 eP/2

)
+

(
dP 0
0 − dP

)]

=

[(
e−P/2AeP/2 − eP/2Ae−P/2 e−P/2Be−P/2 − eP/2BeP/2

−eP/2BeP/2 + e−P/2Be−P/2 eP/2Ae−P/2 − e−P/2AeP/2

)
+

(
dP 0
0 − dP

)]
.

Now, writing the matrices A and B as

A =
(
αj,k

)
1≤j,k≤n

(
Re(αj,j) = 0, αk,j = −αj,k (1 ≤ j < k ≤ n)

)
,

B =
(
βj,k

)
1≤j,k≤n

(
βk,j = βj,k (1 ≤ j ≤ k ≤ n)

)
,

where αj,k, βj,k are complex 1-forms, one obtains

(
e−P/2AeP/2 − eP/2Ae−P/2

)
j,k

= −2 sh
(̺j − ̺k

2

)
αj,k (1 ≤ j < k ≤ n),

(
eP/2Ae−P/2 − e−P/2AeP/2

)
j,k

= 2 sh
(̺j − ̺k

2

)
αj,k (1 ≤ j < k ≤ n),

(
e−P/2Be−P/2 − eP/2BeP/2

)
j,k

= −2 sh
(̺j + ̺k

2

)
βj,k (1 ≤ j ≤ k ≤ n),

(
eP/2BeP/2 + e−P/2Be−P/2

)
j,k

= 2 sh
(̺j + ̺k

2

)
βj,k (1 ≤ j ≤ k ≤ n).

Now taking wedge product of the above entries, it easily follows that

dµ(x) = cn δ(̺)2
n∧

j=1

d̺j

∧

1≤j<k≤n

(αj,k ∧ αj,k)
∧

1≤j≤k≤n

(βj,k ∧ βj,k),

whence, identifying

dµ(u) =
∧

1≤j<k≤n

(αj,k ∧ αj,k)
∧

1≤j≤k≤n

(βj,k ∧ βj,k)

we have the result stated in the lemma.
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Theorem 4.3. For any arithmetic subgroup Γ ( Spn(R) such that M := Γ\Hn is compact, we have

sup
Z∈Hn

SΓ
κ (Z) ≤ cn,Γ κ

n(n+1)/2 (κ ≥ n+ 1),

where cn,Γ is a positive real constant depending only on n and Γ.

Proof. For Z, W ∈ Hn, let R(Z,W ) denote the matrix

R(Z,W ) =



r1(Z,W ) 0

. . .

0 rn(Z,W )


 (rj(Z,W ) ∈ R, 1 ≤ j ≤ n),

with the entries rj(Z,W ) (1 ≤ j ≤ n) of R(Z,W ) related to the eigenvalues ρj(Z,W ) (1 ≤ j ≤ n) of the
cross-ratio matrix

ρ(Z,W ) = (Z −W )(Z −W )−1(Z −W )(Z −W )−1 (Z,W ∈ Hn)

by the relation

exp(2rj(Z,W )) =
1 +

√
ρj(Z,W )

1 −
√
ρj(Z,W )

(1 ≤ j ≤ n).

Let R(Z) denote the matrix R(Z, i1n) with corresponding diagonal entries rj(Z) (1 ≤ j ≤ n) and for
γ ∈ Γ, let Rγ(Z) denote the matrix R(Z, γZ) with corresponding diagonal entries rγ

j (Z) (1 ≤ j ≤ n).

Now, since M = Γ\Hn is compact, there are only finitely many elements γ ∈ Γ, namely, the torsion
elements of Γ, for which the point γZ can get arbitrarily close to Z. Then, denoting the set of torsion
elements of Γ by ΓT , there is a positive real constant cn,Γ, such that Rγ(Z) ≥ cn,Γ 1n for all γ ∈ Γ \ ΓT

and Z ∈ Hn. Therefore, given n positive real numbers rj (1 ≤ j ≤ n), we have

#{γ ∈ Γ | rγ
j (Z) ≤ rj , 1 ≤ j ≤ n} ≤ cn,Γ voln({Z ∈ Hn | rj(Z) ≤ rj 1 ≤ j ≤ n}),

for some positive real positive constant cn,Γ depending only on n and Γ. The dependence on Γ here is
given by the maximal order of the torsion elements of Γ.

As the volume form on Hn in polar coordinates is given by

dµn(k0 exp(2R)i) = |δ(2r)|
n∧

j=1

drj ∧ dµ(k0)

with R = diag(r1, r2, . . . , rn), r =
(

R 0
0 −R

)
and k0 ∈ K0 = Spn(R) ∩ O(2n,R), we have

dvoln({Z ∈ Hn | rj(Z) ≤ rj , 1 ≤ j ≤ n}) = |δ(2r)|
n∧

j=1

drj .

Therefore, as the heat kernel K
(κ)
t (2R) is non-negative, continuous, and monotonically decreasing in each

rj (1 ≤ j ≤ n), we have

∑

γ∈Γ

K
(κ)
t (Rγ(Z)) ≤ cn,Γ

∞̂

r1=0

. . .

∞̂

rn=0

K
(κ)
t (2R) |δ(2r)|

n∧

j=1

drj .

Hence, from equation (4.4) and Theorem 3.21, we have

SΓ
κ (Z) ≤ cn,Γ In(κ, t), (4.7)

where the function In(κ, t) is given by the integral

In(κ, t) :=
exp

((
− nκ(κ− (n+ 1)) −∑n

j=1 j
2
)
t/4
)

tn2+n/2

∞̂

r1=0

. . .

∞̂

rn=0

ˆ

k∈K

ε(̺(r, k)) exp
(

−∑n
j=1

(
̺j(r, k)2/t− κ|̺j(r, k)|

))

δ(̺(r, k))
∏n

j=1 chκ(rj)
|δ(2r)|

n∧

j=1

drj

∧
dµ(k),
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Now, using Lemmas 4.1 and 4.2, we switch the above integral from over r, k (k ∈ K) coordinates on
X = G/U to ̺, u (u ∈ U) coordinates on X . As we have

|δ(2r)|
n∧

j=1

drj ∧ dµ(k) = cn δ(̺)2
n∧

j=1

d̺j ∧ dµ(u),

with this change of variables, the above integral becomes

In(κ, t) = cn

exp
((

− nκ(κ− (n+ 1)) −∑n
j=1 j

2
)
t/4
)

tn2+n/2

∞̂

̺1=−∞

. . .

∞̂

̺n=−∞

ˆ

u∈U

ε(̺) exp
(

−∑n
j=1

(
̺2

j/t− κ|̺j |
))

∏n
j=1 chκ(rj)

δ(̺)

n∧

j=1

d̺j

∧
dµ(u)

= cn

exp
((

− nκ(κ− (n+ 1)) −∑n
j=1 j

2
)
t/4
)

tn2+n/2

∞̂

̺1=−∞

. . .

∞̂

̺n=−∞

ε(̺)δ(̺) exp
(

−
n∑

j=1

(
̺2

j/t− κ|̺j |
))
Jn(̺, κ)

n∧

j=1

d̺j ,

where Jn(̺, κ) is the integral given by

Jn(̺, κ) :=

ˆ

u∈U

dµ(u)∏n
j=1 chκ(rj)

.

Now, as 1/ ch(rj) ≤ 2 exp(−rj) (1 ≤ j ≤ n) and κ ≥ n+ 1 we have

Jn(̺, κ) ≤ cn

ˆ

u∈U

exp
(

− κ
n∑

j=1

rj

)
dµ(u) ≤ cn

ˆ

u∈U

exp
(

− (n+ 1)
n∑

j=1

rj

)
dµ(u).

Then, as rj ∈ R≥0 (1 ≤ j ≤ n), from Lemma 3.4, we have

φ0(exp(r)) ≥ exp(−ρ(r)) = exp(−nr1 − (n− 1)r2 − . . .− rn) ≥ exp
(

− (n+ 1)

n∑

j=1

rj

)
,

where φ0 is the real spherical function on Hn corresponding to λ = 0 ∈ a∨. Then, we have

Jn(̺, κ) ≤ cn

ˆ

u∈U

φ0(exp(r)) dµ(u) = cn Φ0(exp(̺)),

where Φ0(exp(̺)) is the complex spherical function on X = G/U corresponding to λ = 0. Now, from
Proposition 3.14, we have

Jn(̺, κ) ≤ cn
ε(̺)

δ(2̺)
.

Putting Jn(̺, κ) back in In(κ, t), we have

In(κ, t) ≤ cn

exp
((

− nκ(κ− (n+ 1)) −∑n
j=1 j

2
)
t/4
)

tn2+n/2

∞̂

̺1=−∞

. . .

∞̂

̺n=−∞

ε(̺)2 exp
(

−∑n
j=1

(
̺2

j/t− κ|̺j |
))

ν(̺)

n∧

j=1

d̺j ,

where ν(̺) is the function given by

ν(̺) =
∏

1≤j≤n

ch(̺j)
∏

1≤j<k≤n

ch
(̺j + ̺k

2

) ∏

1≤j<k≤n

ch
(̺j − ̺k

2

)
.
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Now, since the integrand in the above integral is an even function of each ̺j (1 ≤ j ≤ n), we can integrate
each ̺j in the limit ̺j ∈ [0,∞], thereby giving

In(κ, t) ≤ cn

exp
((

− nκ(κ− (n+ 1)) −∑n
j=1 j

2
)
t/4
)

tn2+n/2

∞̂

̺1=0

. . .

∞̂

̺n=0

ε(̺)2 exp
(

−∑n
j=1

(
̺2

j/t− κ̺j

))

ν(̺)

n∧

j=1

d̺j

Now, as 1/ν(̺) ≤ cn exp(−n̺1−(n−1)̺2−. . .−̺n) and nκ(κ−(n+1))+
∑n

j=1 j
2 = (κ−n)2+. . .+(κ−1)2,

we have

In(κ, t) ≤ cn

∞̂

̺1=0

. . .

∞̂

̺n=0

ε(̺)2 exp
(

−∑n
j=1(̺j/

√
t− (κ− (n− j + 1)

√
t/2)2

)

tn2+n/2

n∧

j=1

d̺j

≤ cn

∞̂

̺1=−∞

. . .

∞̂

̺n=−∞

ε(̺)2 exp
(

−∑n
j=1(̺j/

√
t− (κ− (n− j + 1)

√
t/2)2

)

tn2+n/2

n∧

j=1

d̺j ;

in the sequel we denote the latter integral by Hn(κ, t). Then setting ξj = ̺j/
√
t− (κ− (n− j + 1))

√
t/2,

we have

̺j = ξj

√
t+ (κ− (n− j + 1))t/2,

whence one obtains

n∧

j=1

d̺j = tn/2
n∧

j=1

dξj .

The quantity ε(̺)2 now becomes

ε(̺)2 =
∏

1≤j≤n

̺2
j

∏

1≤l<m≤n

(̺l − ̺m)2
∏

1≤l<m≤n

(̺l + ̺m)2

= tn
2 ∏

1≤j≤n

(
ξj +

(κ− (n− j + 1))
√
t

2

)2 ∏

1≤l<m≤n

(
(ξl − ξm) +

l −m

2

√
t

)2

×

×
∏

1≤l<m≤n

(
(ξl + ξm) +

(
κ−

(
n− l +m

2
+ 1
))√

t

)2

,

which is a polynomial in ξ = (ξ1, . . . , ξn), κ and t. Then, putting ε(̺)2 back in ??, we have

Hn(κ, t) =

∞̂

ξ1=−∞

. . .

∞̂

ξn=−∞

exp
(

−
n∑

j=1

ξ2
j

) ∏

1≤l<m≤n

(
(ξl + ξm) +

(
κ−

(
n− l+ m

2
+ 1
))√

t

)2

×

×
∏

1≤j≤n

(
ξj +

(κ− (n− j + 1))
√
t

2

)2 ∏

1≤l<m≤n

(
(ξl − ξm) +

l −m

2

√
t

)2 n∧

j=1

dξj .

After evaluating integrals of the form

∞̂

ξ=−∞

ξm exp(−ξ2) dξ =
1 + (−1)m

2
Γ
(m+ 1

2

)
(m ∈ N≥0),

Hn(κ, t) becomes a polynomial in κ and t. As κ ≥ n + 1 > 0 and t > 0, for an upper bound, we need
only consider the highest powers of κ and t in Hn(κ, t). From the above formula, it follows that

Hn(κ, t) ≤ cn κ
n(n+1) tn(n+1)/2µ(

√
t),
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where µ is a polynomial of order n(n− 1). Thus, from equations (4.7) and (??), one obtains

SΓ
κ (Z) ≤ cn,Γ κ

n(n+1) tn(n+1)/2µ(
√
t) (Z ∈ Hn).

Now multiplying both sides of the above inequality by exp(−κt) and integrating over t ∈ [0,∞], we have

∞̂

t=0

exp(−κt)SΓ
κ (Z) dt =

SΓ
κ (Z)

κ
≤ cn,Γ κ

n(n+1)

∞̂

t=0

exp(−κt) tn(n+1)/2µ(
√
t) dt ≤ cn,Γ

κn(n+1)

κn(n+1)/2+1
,

whence it easily follows that

SΓ
κ (Z) ≤ cn,Γ κ

n(n+1)/2 (Z ∈ Hn)

thereby proving the result stated in the theorem.

4.2 Sup-norm bounds in the cofinite setting

Theorem 4.4. For any arithmetic subgroup Γ ( Spn(R) such that M := Γ\Hn is of finite volume, we
have

sup
Z∈Hn

SΓ
κ (Z) ≤ cn κ

n(n+1)/2
∑

γ∈Γ

1∏n
j=1 chκ(rγ

j (Z))
(κ ≥ n+ 1),

where rγ
j (Z) denotes the diagonal entries of the diagonal matrix Rγ(Z) = R(Z, γZ) and cn is a positive

real constant depending only on n and Γ.

Proof. From equation (4.3), we have

SΓ
κ (Z) = lim

t→∞
exp

(
− nκ

4
(κ− (n+ 1)) t

)∑

γ∈Γ

K
(κ)
t (2Rγ(Z)) (4.8)

and from Theorem 3.21, we have

K
(κ)
t (2Rγ(Z)) ≤ In(κ, t, Rγ(Z))∏n

j=1 chκ(rγ
j (Z))

,

where In(κ, t, Rγ(Z)) is the integral given by

In(κ, t, Rγ(Z)) = cn

exp
(

−∑n
j=1 j

2t/4
)

tn2+n/2

ˆ

k∈K

ε(̺) exp
(

−∑n
j=1

(
̺2

j/t− κ|̺j |
))

δ(̺)
dµ(k).

Here ̺ = ̺(rγ(Z), k) is the diagonal matrix ̺(rγ(Z), k) =
( P (rγ (Z),k) 0

0 −P (rγ (Z),k)

)
with

P (rγ(Z), k) =



̺1(rγ(Z), k) 0

. . .

0 ̺n(rγ(Z), k)


 (̺j(rγ(Z), k) ∈ R, 1 ≤ j ≤ n)

related to

rγ(Z) =

(
Rγ(Z) 0

0 −Rγ(Z)

)

via the matrix equality

k exp(rγ(Z))k
t

= u exp(̺)ut (k ∈ K, u ∈ U). (4.9)

Since heat kernels decrease rapidly with increasing distance, the integral In(κ, t, Rγ(Z)) also decreases
rapidly with increasing distance and hence we have

In(κ, t, Rγ(Z)) ≤ In(κ, t, 0n). (4.10)

41



Then, for Rγ(Z) = 0n, the matrix equality (4.9) becomes

kk
t

= u exp(̺)ut (k ∈ K, u ∈ U). (4.11)

For the eigendecomposition (4.11) of kk
t
, we next determine u and exp(̺) in terms of k ∈ K. For

this, we use the matrix l from (3.25) and calculate

kk
t

=

(
A B

−B A

)
= l−1

(
A+ iB 0

0 A− iB

)
l, (4.12)

where the matrix h := A + iB is Hermitian, as kk
t

is Hermitian; note that A − iB = h−t. Since h is
Hermitian, we have

h = vDvt,

where v ∈ Un and D is a real diagonal (n× n)-matrix. Substituting this into (4.12) yields

kk
t

= l−1

(
v 0
0 v

)(
D 0
0 D−1

)(
vt 0
0 vt

)
l.

In this way, the factors on the right-hand side of (4.11) become

u = l−1

(
v 0
0 v

)
and exp(̺) =

(
D 0
0 D−1

)
. (4.13)

Note that the eigendecomposition (4.11) is unique only up to the ordering of the eigenvalues exp(±̺j)
(1 ≤ j ≤ n), i.e., we can always choose u ∈ U in such a way so that ̺j ∈ R≥0 (1 ≤ j ≤ n). Therefore,
without loss of generality, for the rest of the calculation, we assume ̺j ∈ R≥0 (1 ≤ j ≤ n).

Next, we determine the invariant volume form dµ(k) in terms of ̺ and v by proceeding as in the proof

of Lemma 4.1. From x = kk
t

= u exp(̺)ut, one obtains

dx = dk k
t

+ k dk
t

= du exp(̺)ut + u exp(̺) d̺ ut + u exp(̺) dut.

Now as x−1 = (kk
t
)−1 = kkt = u exp(−̺)ut, we have

x−1 dx = k (kt dk + dk
t
k) k

t
= ue−̺/2 (e−̺/2(ut du)e̺/2 + e−̺/2(d̺)e̺/2 + e̺/2(dutu)e−̺/2) e̺/2ut.

Noting that dutu = −ut du, we take the volume form on both sides, denoted by the square brackets [ · ],
to obtain

[kt dk + (kt dk)
t
] = [e−̺/2(ut du)e̺/2 + e−̺/2(d̺)e̺/2 − e̺/2(ut du)e−̺/2].

From the structure of u obtained in (4.13), it is easy to see that the invariant matrix differential form
ut du is of the form

ut du =

(
vt dv 0

0 vt dv

)
.

Now, writing e−̺/2(ut du)e̺/2 + e−̺/2(d̺)e̺/2 − e̺/2(ut du)e−̺/2 in the familiar block decomposed form,
we have

[kt dk + (kt dk)
t
] =

[(
e−P/2 0

0 eP/2

)(
vt dv 0

0 vt dv

)(
eP/2 0

0 e−P/2

)

−
(
eP/2 0

0 e−P/2

)(
vt dv 0

0 vt dv

)(
e−P/2 0

0 eP/2

)
+

(
dP 0
0 − dP

)]

The right-hand side of the above equation gives


(

dP + e−P/2(vt dv)eP/2 − eP/2(vt dv)e−P/2 0
0 − dP + eP/2(vt dv)e−P/2 − e−P/2(vt dv)eP/2

)

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Now, taking vt dv = (ωj,k)1≤j,k≤n, we have

(dP + e−P/2(vt dv)eP/2 − eP/2(vt dv)e−P/2)j,k = δj,k d̺j + 2 sh
(̺j − ̺k

2

)
ωj,k.

Therefore, we have

[kt dk + (kt dk)
t
] = cn

∏

1≤j<k≤n

sh2
(̺j − ̺k

2

) n∧

j=1

d̺j

∧

1≤j<k≤n

(ωj,k ∧ ωj,k).

Since kt dk ∈ k is of the form

kt dk =

(
A B

−B A

)
(A,B ∈ Cn×n, B = Bt, A = −At),

we have

kt dk + (kt dk)
t

= 2i

(
Im(A) Im(B)

− Im(B) Im(A)

)
= 2i Im(kt dk).

Then,identifying dµ(v) = [vt dv] = ∧1≤j<k≤n(ωj,k ∧ ωj,k), we have

dµ(k) = cn

∏

1≤j<k≤n

sh2
(̺j − ̺k

2

) n∧

j=1

d̺j

∧
dµ(v)

∧
dµ(k0) (k0 ∈ K0).

This allows us to write

In(κ, t, 0n) =cn

exp
(

−∑n
j=1 j

2t/4
)

tn2+n/2

∞̂

̺1=0

. . .

∞̂

̺n=0

ε(̺) exp
(

−∑n
j=1 (̺2

j/t− κ̺j)
)

δ(̺)
×

×
∏

1≤l<m≤n

sh2
(̺l − ̺m

2

) n∧

j=1

d̺j .

Therefore, we have

exp
(

− nκ

4
(κ− (n+ 1)) t

)
In(κ, t, 0n) =cn

∞̂

̺1=0

. . .

∞̂

̺n=0

ε(̺)
n∏

j=1

exp
(

− (̺j/
√
t− (κ− (n− j + 1))

√
t/2)2

)

tn2+n/2
×

×
n∏

j=1

exp(̺j)

sh(̺j)

∏

1≤l<m≤n

exp(̺l) sh
(
(̺l − ̺m)/2

)

sh
(
(̺l + ̺m)/2

)
n∧

j=1

d̺j

Now setting ξj = ̺j/
√
t− (κ− (n− j + 1))

√
t/2, we have

̺j = ξj

√
t+ (κ− (n− j + 1))t/2, (4.14)

whence one obtains

n∧

j=1

d̺j = tn/2
n∧

j=1

dξj .

Now see that

lim
t→∞

ε(̺)

tn2 = lim
t→∞

∏

1≤j≤n

̺j

t

∏

1≤l<m≤n

(̺l

t
+
̺m

t

) ∏

1≤l<m≤n

(̺l

t
− ̺m

t

)

=
∏

1≤j≤n

κ− (n− j + 1)

2

∏

1≤l<m≤n

(
κ−

(
n− l +m

2
+ 1
)) ∏

1≤l<m≤n

l −m

2
.

Also, as t → ∞, by the substitution (4.14), we have ̺j → ∞ (1 ≤ j ≤ n). Therefore, taking the limit at
t → ∞, we obtain

lim
t→∞

exp(̺j)

sh(̺j)
= lim

̺j→∞

exp(̺j)

sh(̺j)
= 2.

43



Next, as

̺l − ̺m = (ξl − ξm)
√
t+ (l −m)t

and for l < m we have l −m < 0, the quantity exp(̺l − ̺m) → 0 as t → ∞. Therefore, we have

lim
t→∞

exp(̺l) sh
(
(̺l − ̺m)/2

)

sh
(
(̺l + ̺m)/2

) = lim
t→∞

exp(̺l)
(

exp
(
(̺l − ̺m)/2

)
− exp

(
− (̺l − ̺m)/2

))

exp
(
(̺l + ̺m)/2

)
− exp

(
− (̺l + ̺m)/2

)

= lim
t→∞

exp(̺l − ̺m) − 1

1 − exp(−(̺l + ̺m))
= −1 (1 ≤ l < m ≤ n).

Combining all the above limits, we have

lim
t→∞

exp
(

− nκ

4
(κ− (n+ 1)) t

)
In(κ, t, 0n)

= cn

∏

1≤j≤n

κ− (n− j + 1)

2

∏

1≤l<m≤n

(
κ−

(
n− l +m

2
+ 1
)) ∏

1≤l<m≤n

m− l

2

≤ cn κ
n(n+1)/2.

Then, from equation (4.8) and equation (4.10), the statement of the theorem easily follows.

Theorem 4.5. For any arithmetic subgroup Γ ( Spn(R) such that M := Γ\Hn is of finite volume, we
have

sup
Z∈Hn

SΓ
κ (Z) ≤ cn,Γ κ

3n(n+1)/4 (κ ≥ n+ 1),

where cn,Γ is a positive real constant depending only on n and Γ.

Proof. By Theorem 2.13, we know that the boundary M⋆ \M of M consists of finite union of subspaces
Mj := (Γ ∩ P (Pj))\Pj , where Pj runs through a set of representatives of equivalence classes modulo Γ
of rational boundary components of Hn, and its subspaces of strictly smaller degree. We denote by C
the set of all such inequivalent chains of boundary components of M . Then, for P ∈ C, we can define
boundary neighbourhoods Uε(P) containing the entire chain P , such that the complement of their union
in M , i.e.,

Kε := M \
⋃

P ∈C

Uε(P)

is a compact subset of M . We shall now estimate SΓ
κ (Z) for Z ranging through Kε and Uε(P) (P ∈ C),

respectively.

In case of the compact set Kε, using Theorem 4.3, we have already determined that

sup
Z∈Kε

SΓ
κ (Z) ≤ cn,Γ κ

n(n+1)/2 (κ ≥ n+ 1),

where the constant cn,Γ > 0 depends only on n and Γ..

Next, in case of Uε(P) (P ∈ C), by Remark 2.14, without loss of generality, we can assume P to be
the chain

Γ0\H0 < Γ1\H1 < . . . < Γj\Hj < . . . < Γn−1\Hn−1

of standard boundary components of Γn\Hn.

Let Fn denote the standard fundamental domain of the Siegel modular group Γn. For Z ∈ Fn,
there exists a constant c3(n) > 0 depending only on n, such that Y ≥ c3(n)1n (see subsection 2.2). Let
λj(Y ) (1 ≤ j ≤ n) denote the ordered set of eigenvalues

c3(n) ≤ λ1(Y ) ≤ . . . ≤ λj(Y ) ≤ . . . ≤ λn(Y )

of the positive definite matrix Y . Then Uε(P) can be taken as the neighbourhood

Sε := {Z = X + iY ∈ Fn | λn(Y ) > ε}
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of the standard boundary components of Fn. As λn(Y ) denotes the highest eigenvalue of Y , the com-
plement of Sε in Fn is then given by the compact subset

Kε = {Z = X + iY ∈ Fn | c3(n)1n ≤ Y ≤ ε1n}.

Let f ∈ Sn
κ (Γ) be a cusp form of weight κ. For Z ∈ Hn such that Y is Minkowski reduced and

Y > c1n for some c > 0, there exist positive numbers c1(n, c) > 0 and c2(n, c) > 0 depending only on n
and c, such that

|f(Z)| ≤ c1(n, c) exp(−c2(n, c) tr(Y )).

(see [26, page 57]). Since here we consider Z ∈ Fn, we can take c = c3(n). In that case, the positive
numbers c1(n, c) > 0 and c2(n, c) > 0 depend only on n and we have

|f(Z)| ≤ c1(n) exp(−c2(n) tr(Y )) (Z ∈ Fn). (4.15)

This shows that the function f(Z)/ exp(ic2(n) tr(Z)) is a bounded holomorphic function on Sε and hence,
by maximum modulus principle, its absolute value

∣∣∣∣
f(Z)

exp
(
ic2(n) tr(Z)

)
∣∣∣∣
2

= exp(2c2(n) tr(Y ))|f(Z)|2

takes its maximum value at the boundary

∂Sε = {Z = X + iY ∈ Fn | λn(Y ) = ε}

of Sε. Now, write det(Y )κ|f(Z)|2 as

det(Y )κ|f(Z)|2 = exp(2c2(n) tr(Y ))|f(Z)|2 det(Y )κ

exp(2c2(n) tr(Y ))
.

Then writing the eigenvalues of Y as λj(Y ) (1 ≤ j ≤ n), we have

det(Y )κ

exp(2c2(n) tr(Y ))
=

n∏

j=1

λj(Y )κ

exp(2c2(n)λj(Y ))
.

The functions λκ
j /exp(2c2(n)λj) attain maxima at λj = κ/(2c2(n)) and decreases monotonically for

λj > κ/(2c2(n)). Therefore, if we choose ε > κ/(2c2(n)), then we have

sup
Z∈M

SΓ
κ (Z) = sup

Z∈Kε

SΓ
κ (Z) ≤ cn,Γ κ

n(n+1)/2

(
κ ≥ n+ 1, ε >

κ

2c2(n)

)
.

Now, in case ε ≤ κ/(2c2(n)), we need to determine supZ∈M SΓ
κ (Z) in the annulus

Sε \ Sκ/(2c2(n)) =

{
Z = X + iY ∈ Fn

∣∣∣∣ ε < λn(Y ) ≤ κ

2c2(n)

}

(

{
Z = X + iY ∈ Fn

∣∣∣∣ Y ≤ κ

2c2(n)
1n

}
.

We do this using Theorems 4.3 and 4.4.

From equation (4.8), we have

SΓ
κ (Z) = lim

t→∞
exp

(
− nκ

4
(κ− (n+ 1)) t

)∑

γ∈Γ

K
(κ)
t (2Rγ(Z)).

We split the sum over Γ according as whether there is a minimum distance between the point γZ and
Z or they can get arbitrarily close. Let Γ∞ denote the set of elements of Γ for which γZ and Z can get
arbitrarily close. Then we split the above sum as

SΓ
κ (Z) = lim

t→∞
exp

(
− nκ

4
(κ− (n+ 1)) t

) ∑

γ∈Γ\Γ∞

K
(κ)
t (2Rγ(Z))

+ lim
t→∞

exp
(

− nκ

4
(κ− (n+ 1)) t

) ∑

γ∈Γ∞

K
(κ)
t (2Rγ(Z)).
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As the function exp
(

− nκ
4 (κ − (n + 1)) t

)∑
γ∈Γ\Γ∞

K
(κ)
t (2Rγ(Z)) is monotonically decreasing in t, we

have

SΓ
κ (Z) ≤ exp

(
− nκ

4
(κ− (n+ 1)) t

) ∑

γ∈Γ\Γ∞

K
(κ)
t (2Rγ(Z)).

+ lim
t→∞

exp
(

− nκ

4
(κ− (n+ 1)) t

) ∑

γ∈Γ∞

K
(κ)
t (2Rγ(Z)).

(4.16)

As for γ ∈ Γ \ Γ∞ the points γZ and Z cannot be arbitrarily close, the first sum can be handled exactly
as in Theorem 4.3 using the counting function to estimate the sum by an integral to give

exp
(

− nκ

4
(κ− (n+ 1)) t

) ∑

γ∈Γ\Γ∞

K
(κ)
t (2Rγ(Z)) ≤ cn,Γ κ

n(n+1)/2. (4.17)

The second sum was estimated in Theorem 4.4 to be

lim
t→∞

exp
(

− nκ

4
(κ− (n+ 1)) t

) ∑

γ∈Γ∞

K
(κ)
t (2Rγ(Z)) ≤ cn κ

n(n+1)/2
∑

γ∈Γ∞

1∏n
j=1 chκ(rγ

j (Z))
. (4.18)

Thus, it only remains to estimate the sum

∑

γ∈Γ∞

1∏n
j=1 chκ(rγ

j (Z))
. (4.19)

Since Γ∞ is defined as the set of elements of Γ for which γZ and Z can get arbitrarily close, by
Remark 2.12, we have

Γ∞ =

n−1⋃

j=0

Γj
∞,

where Γj
∞ := Γ ∩Wj . Thus, by (2.9), these groups are explicitly given by

Γ0
∞ =

{(
1n S
0 1n

) ∣∣∣∣ S ∈ Symn(Z)

}
,

Γj
∞ =

{(
A AS
0 A−t

) ∣∣∣∣ A =

(
1j 0
L 1n−j

)
, S =

(
0 Ht

H S2

)}
(1 ≤ j ≤ (n− 1)),

where L,H ∈ Z(n−j)×j and S2 ∈ Symn−j(Z).

Next, we need an effective way of calculating the quantity 1/
∏n

j=1 chκ(rγ
j (Z)). Here we derive a more

general formula for the quantity 1/
∏n

j=1 ch2(rj(Z,W )) (Z,W ∈ Hn), where setting W = γZ (γ ∈ Γ∞),
we can easily obtain the sum in (4.19) above.

Recall from subsection 2.1 the cross ratio

ρ(W,Z) = (W − Z)(W − Z)−1(W − Z)(W − Z)−1 (Z,W ∈ Hn).

Let ρj(Z,W ) (1 ≤ j ≤ n) denote the eigenvalues of ρ(W,Z). The point Z = X + iY ∈ Hn, where
X,Y ∈ Rn×n with Y > 0 can be written as

Z =

(
1n X
0 1n

)(
Y 1/2 0

0 Y −1/2

)
· i1n.

Now, as the matrices ρ(Z,W ) and ρ(gZ, gW ) have the same set of eigenvalues for all g ∈ Spn(R), setting

V =

(
Y −1/2 0

0 Y 1/2

)(
1n −X
0 1n

)
·W = Y −1/2(W −X)Y −1/2, (4.20)

the cross ratio ρ(V, i1n) has the same eigenvalues as ρ(Z,W ), i.e., ρj(Z,W ) (1 ≤ j ≤ n). Therefore, we
have

det(1n − ρ(Z,W )) = det
(
1n − (V − i1n)(V + i1n)−1(V + i1n)(V − i1n)−1

)
.
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Since these eigenvalues are of the form

ρj(Z,W ) = th2(rj(Z,W )) (1 ≤ j ≤ n),

from the above equations, using the fact (V − i1n)(V + i1n)−1 = (V + i1n)−1(V − i1n), one obtains

1∏n
j=1 ch2(rj(Z,W ))

=
det
(
(V + i1n)(V − i1n) − (V − i1n)(V + i1n)

)

det(V + i1n) det(V − i1n)

=
det(2i(V − V ))

det(V + i1n) det(V − i1n)
.

Then, using the definition of V in equation (4.20), one obtains

1∏n
j=1 ch2(rj(Z,W ))

=
4n det(Im(Z)) det(Im(W ))

| det(W − Z)|2 . (4.21)

Next we estimate the sum in (4.19) by breaking the sum over Γ∞ into sums over Γj
∞ (0 ≤ j ≤ (n−1)).

We begin with Γ0
∞. For γ ∈ Γ0

∞, i.e.,

γ =

(
1n S
0 1n

)
(S ∈ Symn(Z))

we have γZ = Z + S. Therefore, putting W = Z + S in equation (4.21), we obtain

1∏n
j=1 ch2(rγ

j (Z))
=

4n det(Y )2

det(S − 2iY ) det(S + 2iY )
=

1

det(1n + (1
2Y

−1/2SY −1/2)2)
.

Then we estimate the sum over Γ0
∞ by the matrix beta integral

∑

γ∈Γ0
∞

1∏n
j=1 chκ(rγ

j (Z))
≤

ˆ

S∈Symn(R)

[dS]

det(1n + (1
2Y

−1/2SY −1/2)2)κ/2
(4.22)

Now, setting T = 1
2Y

−1/2SY −1/2, we have

[dT ] = cn det(Y )−(n+1)/2[dS].

This gives us

∑

γ∈Γ0
∞

1∏n
j=1 chκ(rγ

j (Z))
≤ cn det(Y )(n+1)/2

ˆ

T ∈Symn(R)

[dT ]

det(1n + T 2)κ/2
.

Then, using Hua’s matrix beta integral (see [22, page 33])

ˆ

T ∈Symn(R)

[dT ](
det (I + T 2)

)α = πn(n+1)/4 Γ
(
α− n/2

)

Γ(α)

n−1∏

ν=1

Γ
(
2α− (n+ ν)/2

)

Γ(2α− ν)
(α > n/2), (4.23)

and det(Y ) < (κ/(2c2(n)))n, from the above calculations, it easily follows that

∑

γ∈Γ0
∞

1∏n
j=1 chκ(rγ

j (Z))
≤ cnκ

n(n+1)/4. (4.24)

Next we consider the sum

∑

γ∈Γj
∞

1∏n
j=1 chκ(rγ

j (Z))
(1 ≤ j ≤ (n− 1)).
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For γ ∈ Γj
∞ (1 ≤ j ≤ (n− 1)), i.e.,

γ =

(
A AS
0 A−t

) (
A =

(
1j 0
L 1n−j

)
, S =

(
0 Ht

H S2

))
,

where L,H ∈ Z(n−j)×j and S2 ∈ Z(n−j)×(n−j), S2 = St
2, we have γZ = A(Z + S)At. Therefore, putting

W = A(Z + S)At in equation (4.21), we obtain

1∏n
j=1 ch2(rγ

j (Z))
=

4n det(Y )2

| det(A(Z + S)At − Z)|2

=
4n det(Y )2

∣∣ det
(
(A(X + S)At −X) + i(AY At + Y )

)∣∣2

Now, just as in the j = 0 case above, we estimate the sum over Γj
∞ by a matrix integral In,κ(Z), i.e.,

∑

γ∈Γj
∞

1∏n
j=1 chκ(rγ

j (Z))
≤ Ij

n,κ(Z),

where the integral In,κ(Z) is given by

Ij
n,κ(Z) =

ˆ

L

ˆ

H

ˆ

S2

2nκ det(Y )κ [dS2] ∧ [dH ] ∧ [dL]∣∣det
(
(A(X + S)At −X) + i(AY At + Y )

)∣∣κ .

Next consider the the block decomposition

X =

(
X1 Xt

12

X12 X2

)
(X1 ∈ Rj×j , X2 ∈ R(n−j)×(n−j), X12 ∈ R(n−j)×j).

of the matrix X ∈ Rn×n. Then, we have

A(X + S)At −X =

(
0 Ht +X1L

t

H + LX1 S2 + (LHt +HLt) + (LXt
12 +X12L

t + LX1L
t)

)
.

Now, since

[d(S2 + (LHt +HLt) + (LXt
12 +X12L

t + LX1L
t))] ∧ [d(H + LX1)] ∧ [dL]

= [dS2] ∧ [dH ] ∧ [dL],

we can simply replace the term A(X + S)At −X in In,κ(Z) with S, to write

Ij
n,κ(Z) =

ˆ

L

ˆ

H

ˆ

S2

2nκ det(Y )κ [dS2] ∧ [dH ] ∧ [dL]

| det((AY At + Y ) + iS)|κ .

Next we write the positive definite matrix Y > 0 in the Cholesky decomposed form Y = BBt, where

B =

(
P1 0
P P2

)
(P1 ∈ Rj×j , P2 ∈ R(n−j)×(n−j), P ∈ R(n−j)×j)

with P1, P2 non-singular lower triangular. Then we have

Ij
n,κ(Z) =

ˆ

L

ˆ

H

ˆ

S2

[dS2] ∧ [dH ] ∧ [dL]∣∣det
(
1/2(1n + (B−1AB)(B−1AB)t + iB−1SB−t)

)∣∣κ . (4.25)

The matrices B−1AB and B−1SB−t, in block decomposed form, are given by

B−1AB =

(
1j 0

P−1
2 LP1 1n−j

)
,

B−1SB−t =

(
0 P−1

1 HtP−t
2

P−1
2 HP−t

1 P−1
2 S2P

−t
2 − P−1

2 (HP−t
1 P t + PP−1

1 Ht)P−t
2

)
,
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respectively. We set

2L̃ = P−1
2 LP1, (4.26)

2H̃ = P−1
2 HP−t

1 , (4.27)

2S̃2 = P−1
2 S2P

−t
2 − P−1

2 (HP−t
1 P t + PP−1

1 Ht)P−t
2 (4.28)

Then the matrix 1/2(1n + (B−1AB)(B−1AB)t + iB−1SB−t) in the denominator of the integrand in
equation (4.25) is given by

1

2
(1n + (B−1AB)(B−1AB)t + iB−1SB−t) =

(
1j L̃t + iH̃t

L̃+ iH̃ 1n−j + 2L̃L̃t + iS̃2

)

and the corresponding determinant is given by

det
(1

2
(1n + (B−1AB)(B−1AB)t + iB−1SB−t)

)

= det((1n−j + L̃L̃t + H̃H̃t) + i(S̃2 − H̃L̃t − L̃H̃t)).

Next we set

Q = 1n−j + L̃L̃t + H̃H̃t,

T = S̃2 − H̃L̃t − L̃H̃t.

Then the integral Ij
n,κ(Z) in equation (4.25) is given by

Ij
n,κ(Z) =

ˆ

S2

ˆ

H

ˆ

L

[dS2] ∧ [dH ] ∧ [dL]

| det(Q+ iT )|κ .

Next we need to calculate the volume form [dS2]∧ [dH ]∧ [dL] in terms of T, L̃ and H̃ . From equations
(4.26) and (4.27), we obtain

2j(n−j)[dL̃] =
det(P1)n−j

det(P2)j
[dL],

2j(n−j)[dH̃ ] =
1

det(P1)n−j det(P2)j
[dH ].

From equation (4.28), one obtains

2(n−j)(n−j+1)/2[dS̃2] ∧ [dH ] ∧ [dL] =
[dS2] ∧ [dH ] ∧ [dL]

det(P2)n−j+1
.

Now, since [dS̃2] ∧ [dH̃ ] ∧ [dL̃] = [dT ] ∧ [dH̃ ] ∧ [dL̃], we conclude that

[dS2] ∧ [dH ] ∧ [dL] = 2(n−j)(n−j+1)/2+2j(n−j) det(P2)n−j+1 det(P2)2j [dT ] ∧ [dH̃ ] ∧ [dL̃].

Therefore, we have

Ij
n,κ(Z) ≤ cn det(P2)n−j+1 det(P2)2j

ˆ

L̃

ˆ

H̃

ˆ

T

[dT ] ∧ [dH̃ ] ∧ [dL̃]

| det(Q+ iT )|κ , (4.29)

where cn, as usual, stands for a generic constant depending only on n. As the matrix Q = 1n−j + L̃L̃t +

H̃H̃t is positive definite, the integral

ˆ

T ∈Symn−j(R)

[dT ]

| det(Q+ iT )|κ
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can be written as
ˆ

T ∈Symn−j(R)

[dT ]

| det(Q+ iT )|κ =
1

det(Q)κ

ˆ

T ∈Symn−j(R)

[dT ]

| det(1n−j + iQ−1/2TQ−1/2)|κ .

Then setting T̃ = Q−1/2TQ−1/2, we have

[dT ] = det(Q)(n−j+1)/2[dT̃ ].

Then, using the Hua integral in (4.23), we obtain

ˆ

T ∈Symn−j(R)

[dT ]

| det(Q+ iT )|κ =
1

det(Q)κ−(n−j+1)/2

ˆ

T̃ =T̃ t

[dT̃ ]

det(1n + T̃ 2)κ/2

≤ cn
κ−(n−j)(n−j+1)/4

det(Q)κ−(n−j+1)/2
. (4.30)

Also, from Y ≤ (κ/2c2(n))1n, i.e.,

Y = BBt =

(
P1 0
P P2

)(
P t

1 P t

0 P t
2

)
=

(
P1P

t
1 P1P

t

PP t
1 P2P

t
2 + PP t

)
≤ κ

2c2(n)
1n,

one obtains that

P2P
t
2 + PP t − PP t

1(P1P
t
1)−1P1P

t = P2P
t
2 ≤ κ

2c2(n)
1n−j . (4.31)

Thus we have det(P2) ≤ cnκ
(n−j)/2. Hence, by equation (4.29) and equation (4.30), we have the estimate

Ij
n,κ(Z) ≤cn κ

−(n−j)(n−j+1)/4 κ(n−j)(n−j+1)/2 κj(n−j)

·
ˆ

L̃

ˆ

H̃

[dH̃ ] ∧ [dL̃]

det(1n−j + L̃L̃t + H̃H̃t)κ−(n−j+1)/2
.

Now, to estimate the the integral

ˆ

L̃

ˆ

H̃

[dH̃ ] ∧ [dL̃]

det(1n−j + L̃L̃t + H̃H̃t)κ−(n−j+1)/2
,

we set

1n−j + L̃L̃t = EEt, E−1H̃ = U.

Then, the above integral splits as
ˆ

L̃

ˆ

H̃

[dH̃] ∧ [dL̃]

det(1n−j + L̃L̃t + H̃H̃t)κ−(n−j+1)/2

=

ˆ

L̃∈R(n−j)×j

[dL̃]

det(1n−j + L̃L̃t)κ−(n−j)−1/2

ˆ

U∈R(n−j)×j

[dU ]

det(1n−j + UU t)κ−(n−j+1)/2
.

Proceeding as in [22, Theorem 2.2.1], for matrices X ∈ Rp×q (p, q ∈ N≥1) one obtains the formula

ˆ

X∈Rp×q

[dX ]

det(1p +XXt)µ
= πpq/2

q∏

l=1

Γ(µ− (l − 1)/2 − p/2)

Γ(µ− (l − 1)/2)
(µ > (p+ q − 1)/2).

Using this formula, it immediately follows that
ˆ

U∈R(n−j)×j

[dU ]

det(1n−j + UU t)κ−(n−j+1)/2
≤ cnκ

−j(n−j)/2,

ˆ

L̃∈R(n−j)×j

[dL̃]

det(1n−j + L̃L̃t)κ−(n−j)−1/2
≤ cnκ

−j(n−j)/2.
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Thus, we have the estimate for the integral

ˆ

L̃

ˆ

H̃

[dH̃ ] ∧ [dL̃]

det(1n−j + L̃L̃t + H̃H̃t)κ−(n−j+1)/2
≤ cnκ

−j(n−j),

thereby giving

Ij
n,κ(Z) ≤cn κ

(n−j)(n−j+1)/4.

Hence, we have that

∑

γ∈Γj
∞

1∏n
j=1 chκ(rγ

j (Z))
≤ cn κ

(n−j)(n−j+1)/4 (0 ≤ j ≤ (n− 1))

and consequently,

∑

γ∈Γ∞

1∏n
j=1 chκ(rγ

j (Z))
≤ cn κ

n(n+1)/4.

Thus, from equation (4.18), we have

lim
t→∞

exp
(

− nκ

4
(κ− (n+ 1)) t

) ∑

γ∈Γ∞

K
(κ)
t (2Rγ(Z)) ≤ cn κ

3n(n+1)/4,

whence the theorem follows.

4.3 Uniform sup-norm bounds

Theorem 4.6. Let Γ0 ( Spn(R) be a fixed arithmetic subgroup of Spn(R) such that M0 := Γ0\Hn is of
finite volume. Let Γ ⊆ Γ0 a subgroup of finite index. Then, for κ ≥ n+ 1, we have

sup
Z∈Hn

SΓ
κ (Z) ≤ cn,Γ0 κ

3n(n+1)/4 (κ ≥ n+ 1),

where cn,Γ0 is a positive real constant depending only on n and Γ0.

Proof. As in the proof of Theorem 4.5, we denote by C0 the set of all inequivalent chains of boundary
components of M0 and choose boundary neighbourhoods Uε(P0) (P0 ∈ C0) containing the entire chain
P0 such that the complement of their union in M0, i.e.,

K0,ε := M0 \
⋃

P0∈C0

Uε(P0)

is a compact subset of M0.

Let M := Γ\Hn and π : M → M0 denote the covering map. Then by means of K0,ε, we obtain the
compact subset Kε := π−1(K0,ε) of M . Since Γ ⊆ Γ0, from equation (4.4), by expanding the sum over Γ
to that over the larger group Γ0, we have

SΓ
κ (Z) ≤ exp

(
− nκ

4
(κ− (n+ 1)) t

)∑

γ∈Γ

K
(κ)
t (2Rγ(Z))

≤ exp
(

− nκ

4
(κ− (n+ 1)) t

) ∑

γ∈Γ0

K
(κ)
t (2Rγ(Z)),

which, by Theorem 4.3, gives the uniform bound

sup
Z∈Kε

SΓ
κ (Z) ≤ cn,Γ0 κ

n(n+1)/2 (κ ≥ n+ 1). (4.32)
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We are thus left to bound the quantity SΓ
κ (Z) in the neighbourhoods of M obtained by pulling back

the neighbourhoods Uε(P0) (P0 ∈ C0) of M0 to M . In order to do this, as in the proof of Theorem 4.5,
we can again assume without loss of generality that P0 is the chain

Γ0\H0 < Γ1\H1 < . . . < Γj\Hj < . . . < Γn−1\Hn−1

of standard boundary components of Γn\Hn. Furthermore, we may also assume that the chain P ∈ C of
boundary components of M lying over P0 is also the chain of standard boundary components of Γn\Hn

of ramification index ℓ, say. Then a cusp form f ∈ Sn
κ (Γ) of weight κ has a Fourier expansion (see

equation (2.12))

f(Z) =
∑

T ∈Symn(Q), T >0
T half-integral

a(T ) exp

(
2πi

ℓ
tr(TZ)

)

at P . Then, just like in equation (4.15) in Theorem 4.5, we obtain positive numbers c1(n) > 0 and
c2(n) > 0 depending only on n such that

|f(Z)| ≤ c1(n) exp(−c2(n) tr(Y )/ℓ) (Z ∈ Fn).

Then proceeding as in Theorem 4.5 with c2(n) replaced by c2(n)/ℓ, one sees that for ε > κℓ/(2c2(n)), we
have

sup
Z∈M

SΓ
κ (Z) = sup

Z∈Kε

SΓ
κ (Z)

(
ε >

κℓ

2c2(n)

)
,

which, by equation (4.32) gives the uniform estimate

sup
Z∈M

SΓ
κ (Z) ≤ cn,Γ0 κ

n(n+1)/2 (κ ≥ n+ 1).

Thus, we are left only to bound SΓ
κ (Z) in the range Y ≤ (κℓ/2c2(n))1n. Again, as in equation (4.16)

in Theorem 4.5, we split the sum

SΓ
κ (Z) = lim

t→∞
exp

(
− nκ

4
(κ− (n+ 1)) t

)∑

γ∈Γ

K
(κ)
t (2Rγ(Z))

in equation (4.8) into sums over Γ \ Γ∞ and Γ∞, with Γ∞ := Γ ∩ Γ0,∞, to obtain

SΓ
κ (Z) ≤ exp

(
− nκ

4
(κ− (n+ 1)) t

) ∑

γ∈Γ\Γ∞

K
(κ)
t (2Rγ(Z)).

+ lim
t→∞

exp
(

− nκ

4
(κ− (n+ 1)) t

) ∑

γ∈Γ∞

K
(κ)
t (2Rγ(Z)).

(4.33)

Now as Γ \ Γ∞ ⊆ Γ0 \ Γ0,∞, expanding the first sum to Γ0 \ Γ0,∞ and using equation (4.17), we obtain

exp
(

− nκ

4
(κ− (n+ 1)) t

) ∑

γ∈Γ\Γ∞

K
(κ)
t (2Rγ(Z)) ≤ cn,Γ0 κ

n(n+1)/2.

Thus, it only remains to estimate the sum

∑

γ∈Γ∞

1∏n
j=1 chκ(rγ

j (Z))

in equation (4.18). Note that here we now have

Γ∞ =

n−1⋃

j=0

Γj
∞,
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with Γj
∞ = Γ ∩ Γj

0,∞, i.e.,

Γ0
∞ =

{(
1n ℓS
0 1n

) ∣∣∣∣ S ∈ Symn(Z)

}
,

Γj
∞ =

{(
A AS
0 A−t

) ∣∣∣∣ A =

(
1j 0
ℓL 1n−j

)
, S =

(
0 ℓHt

ℓH ℓS2

)}
(1 ≤ j ≤ (n− 1)),

where L,H ∈ Z(n−j)×j and S2 ∈ Symn−j(Z).

Then, for j = 0, proceeding as in equation (4.22), we have

∑

γ∈Γ0
∞

1∏n
j=1 chκ(rγ

j (Z))
≤

ˆ

S∈Symn(R)

[dS]

det(1n + (1
2Y

−1/2ℓSY −1/2)2)κ/2
.

Now, setting T = 1
2Y

−1/2ℓSY −1/2, we have

[dT ] = cnℓ
n(n+1)/2 det(Y )−(n+1)/2[dS],

thereby giving

∑

γ∈Γ0
∞

1∏n
j=1 chκ(rγ

j (Z))
≤ cnℓ

−n(n+1)/2 det(Y )(n+1)/2

ˆ

T ∈Symn(R)

[dT ]

det(1n + T 2)κ/2
.

Now, from det(Y ) ≤ (κℓ/(2c2(n)))n, it easily follows that we have an uniform estimate

∑

γ∈Γ0
∞

1∏n
j=1 chκ(rγ

j (Z))
≤ cnκ

n(n+1)/4

independent of the ramification index ℓ.

Similarly, for the j > 0 case, proceeding as in Theorem 4.5, in place of substitution equations (4.26)–
(4.28), we set

2L̃ = P−1
2 ℓLP1,

2H̃ = P−1
2 ℓHP−t

1 ,

2S̃2 = P−1
2 ℓS2P

−t
2 − P−1

2 (ℓHP−t
1 P t + PP−1

1 ℓHt)P−t
2 ,

which results in

Ij
n,κ(Z) ≤ cnℓ

−(n−j+1)(n−j)/2−2j(n−j) det(P2)n−j+1 det(P2)2j

ˆ

L̃

ˆ

H̃

ˆ

T

[dT ] ∧ [dH̃ ] ∧ [dL̃]

| det(Q+ iT )|κ

in place of (4.29). Now, with det(P2) ≤ cn(ℓκ)(n−j)/2 coming from Y ≤ (κℓ/2c2(n))1n via equation (4.31),
it follows that

∑

γ∈Γj
∞

1∏n
j=1 chκ(rγ

j (Z))
Ij

n,κ(Z) ≤cn ℓ
−j(n−j)κ(n−j)(n−j+1)/4 ≤ cnκ

(n−j)(n−j+1)/4.

Thus, combined, we get an uniform estimate

∑

γ∈Γ∞

1∏n
j=1 chκ(rγ

j (Z))
≤ cn κ

n(n+1)/4

resulting in the uniform estimate

lim
t→∞

exp
(

− nκ

4
(κ− (n+ 1)) t

) ∑

γ∈Γ∞

K
(κ)
t (2Rγ(Z)) ≤ cn κ

3n(n+1)/4

in the second sum in equation (4.33), thereby proving the theorem.
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