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Abstract

Let T' C Sp,,(R) be an arithmetic subgroup of the symplectic group Sp,,(R) acting on the Siegel
upper half-space H, of degree n. Consider the d-dimensional space of Siegel cusp forms S7(I") of
weight x for I' and let {f;}1<j<a be a basis of SZ(I") orthonormal with respect to the Petersson inner
product. In this paper we show using the heat kernel method that the sup-norm of the quantity
SL(Z) = Z;l:l det(Y)"|f;(2)|? (Z € H,) is bounded above by ¢, r&™""Y/2 when M := I'\H,, is
compact and by ¢, r k34 when M is non-compact of finite volume, where ¢, ,r denotes a positive
real constant depending only on the degree n and the group I'. Furthermore, we show that this bound
is uniform in the sense that if we fix a group I'o and take I" to be a subgroup of I'g of finite index,
then the constant ¢, r in these bounds depends only on the degree n and the fixed group I'o.

1 Introduction

Obtaining sup-norm bounds ||¢|| of eigenfunctions ¢ satisfying Ax e+ A¢ = 0 for the Laplace—Beltrami
operator Ax on a Riemannian manifold X in terms of the eigenvalue A is a classical problem in spectral
theory, for which local estimates exist [2T], [34] that are essentially sharp in this level of generality. In
arithmetic setting, these estimates are expected to be improved drastically[33, B2]. Although major
improvements over the classical general estimates have been obtained in such setting [23], we are still far
from the conjectured bound

[#lloc e A® (e>0) (1.1)

for Hecke eigenforms. However, more interestingly, in this arithmetic setting, the sup-norm bound prob-
lem has been shown to have important connections to various fundamental queries in number theory such
as the Lindel6f hypothesis for the Riemann zeta function [32], quantum ergodicity and entropy bounds
[6], the subconvexity problem for L-functions [I7], distribution of zeros of modular forms [16] and the
study of Arakelov invariants of arithmetic surfaces [I} 24, [29]. This has created a sustained interest in
the sup-norm bound problem in various number-theoretic aspects, one of which we address in this paper.

Although we are far from obtaining (LI for individual eigenforms, in the special setting of holo-
morphic cusp forms, in [IT], optimal bounds have been obtained on average over an orthonormal basis,
without the assumption of strong arithmetic symmetries such as Hecke structure on the eigenforms. As
this setup has a ready generalization in the case of Siegel modular forms, where the sup-norm bound has
also recently been of some interest[4, Bl [7, [§], we attempt here to extend this method and the results
obtained in [I1] to the case of the Siegel upper half-space, which works to a large extent along with some
significant non-trivialities that need special tools from the theory of harmonic analysis of semisimple Lie
groups to get around.

1.1 Sup-norm bounds on H

Let H := {z = « + 4y | y > 0} denote the upper half-plane and I' C SL2(R) denote a Fuchsian subgroup
of the first kind. Let V,(I") denote the space of real analytic functions ¢: H — C with the transformation

behaviour
p(y2) = (Z;Ij)R/QsD(Z) (7= (Ccl Z) € F)- (1.2)
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For ¢ € V,(T"), we set

dzx A dy
loll? = / o) T2,

I\H

whenever it is defined. Let H.(I') := {¢ € Vi(T) | |l¢| < oo} denote the Hilbert space of square
integrable functions in V,(T), equipped with the Petersson inner product. Let A®*) denote the MaaB
Laplacian invariant with respect to the action of ' on ¢ in (LZ). Then the operator A" acts on the
smooth functions of H.(T') and extends to an essentially self-adjoint linear operator acting on a dense
subspace of H,(T).

The eigenvalues for the Laplace equation (A®") + X)p = 0 satisfy A > x/2(1 — #/2) and in case A =
r/2(1—k/2), the corresponding eigenfunction ¢ in H,(I') can be shown to be of the form ¢(z) = y*/2f(z)
with f € S(T), where S, (T") denotes the space of holomorphic cusp forms of weight « with respect to T

Let d = dim(S,(T")) be the dimension of the space S, (I') and consider a basis {f;}1<j<a of Sk(T)
orthonormal with respect to the Petersson inner product. Then, in order to obtain a sup-norm bound
for the quantity

d
S =Y IR (e

in the weight aspect, using the spectral decomposition of the weight-x heat kernel Kt(”’r) and the C-vector
space isomorphism

R

S.(T') 2 ker (A(”) +3 <1 - 5>id) (1.3)

induced by the assignment f — y*/2f, one arrives at the important relation

r T _ E E _ (x,I) >
S (z) = tliglo exp ( 5 (2 1) t) K," ' (z,2) (k > 2), (1.4)
whence analyzing the heat kernel Kt(”’r), in [I1] it is shown that
M
sup ST (2) < cr K . (M compact), '
z€H cr K%/ (M non-compact of finite volume),

where cr > 0 is a positive real number depending only on I'. Furthermore, it is shown that this bound
is uniform in the sense that if we fix a group I'y C SL2(R) and take I' to be a subgroup of T'y of finite

=

index, then the constant cr in these bounds depends only on the fixed group I'g.

1.2 Sup-norm bounds on H,

Let H, :={Z =X +4+iY e C"*"| X,Y € Sym,,(R) : Y > 0} denote the Siegel upper half-space of degree
n and I' C Sp, (R) be an arithmetic subgroup of the symplectic group Sp,,(R). Let S?(T') denote the
space of all Siegel cusp forms of weight x. Let d = dim(S?(T")) be the dimension of the space S?(T") and
{fj}1<j<a be an orthonormal basis of S/(I") with respect to the Petersson inner product. We denote

d
SL(z) = Zdet(Y)“|fj(Z)|2 (Z € H,).

In [7], for T =T, = Sp,,(Z), an asymptotic analysis of the Bergman kernel shows the bound

sup ST (Z) =, k" +D/2 (k > 2n) (1.5)
ZeK

in the weight aspect, where K C .%,, is any fixed compact subset of the standard fundamental domain
F, of H,, for T',,.



In case of individual forms, on the basis of upper and lower bounds for certain specific kinds of Siegel
cusp forms F € §(I'), namely those coming from elliptic modular forms f € S,;(I") via Ikeda lifts, in the
weight aspect, for L2-normalized Siegel Hecke cusp forms F for T',, of (large) weight x and (fixed) genus
n, Blomer in [4] conjectures

sup det(Y)*|F(Z)? =, x"nHD/4,
ZeH,

Combining this conjecture with Hashimoto’s result [19]

dime 8™ (T) = 2n07-1/2 vol (T'\H.,,) KD /2 O (gnn)/2-1y,

(47T)n(n+1)/2
for SL(Z) one conjectures
sup SL(Z) = Op(x®nHD/4), (1.6)
ZeH,
Recently, in [§] it has been shown that
3n(n+1)/4 K3n(n+1)/4 n=1)
rAnAD/A R < sup SE(Z) e § RIMED/Ade (n=2) ,

~ ~—

K3n(n+1)/4 Z €My, K (5n=3)(n+1)/4+c (n >3

which establishes (L) for n = 1 and n = 2, but moves away from the optimal upper bound for n > 2.

1.3 Statement of results

The main result of this paper is the following theorem, which establishes the conjecture (L)) for n > 2 by
relating SL(Z) with the heat kernel Kt("/”’r) corresponding to the Siegel-MaaB Laplacian A®) on T'\H,,.

Theorem 1.1. Let T' C Sp,,(R) be an arithmetic subgroup and S*(I') denote the space of Siegel cusp
forms of weight x on H,, with respect to I'. Let {f;}1<j<a be a basis of S2(T') orthonormal with respect
to the Petersson inner product. Then, for all n > 2, we have

d
sup > det(V)"|f;(2) P < (52 n+1)

ZeHnj:1

Cn.0 kM HD/2 (T cocompact),
o KD/ (T cofinite),

where ¢, v > 0 s a positive real number depending only on the degree n of H,, and the group I'.

Furthermore, this bound is uniform in the sense that if we fix a group T'y C Sp,,(R) and take T to be
a subgroup of I'y of finite index, then the constant c, r in these bounds depends only on the degree n and
the fixzed group T'g.

This generalizes the theorems 4.2, 5.2, and 6.1 in [I1]. Furthermore, as & > n+ 1, essentially the same
arguments generalize the theorem 3.1 in [25] to obtain for an orthonormal basis {f;}1<j<a of S (T)
and a positive real number ¢, r, > 0 depending only on n and a fixed base space My := I'g\H,, the
estimate
d

dup(Z) 1 5
= su g det(Y)" T f.(Z < cpnrys
dus(Z) Zeﬁ%l)n = YT < enr

where dup denotes the volume form of the Bergman metric

d
dup(Z) =Y _|H(Z2)> N dzjxAdy
j=1

1<j<k<n
and dug denotes the volume form of the Siegel metric
/\ dSijk N dyjyk
1<j<k<n

s (2) = == orwymeT

on H,,.



1.4 Strategy of the proof

For the proofs, we follow the same general method developed in [IT]. Let V7(T") denote the space of all
real-analytic functions ¢: H,, — C, which have the transformation behaviour

o(17) = <%>W¢(z> (=(& 5)er) (1.7)
For ¢ € VI (T'), we set

ol = / 0(2)? djun(2),

I\H,

whenever it is defined. Let HZ(T') := {¢ € V(') | |l¢|]| < oo} denote the Hilbert space of square
integrable functions in V'(I"), equipped with the Petersson inner product. Let A®) denote the Siegel-
Maafl Laplacian invariant with respect to the action of I" on ¢ in (7). Then, the operator A acts
on the smooth functions of H}(T") and extends to an essentially self-adjoint linear operator acting on a
dense subspace of H]!(I").

The eigenvalues for the Laplace equation (A%)+)) ¢ = 0 satisfy the inequality A > (nr/4)((n+1)—x),
with the equality A = (nk/4)((n + 1) — k) being attained if and only if ¢ is of the form p(Z) =
det(Y)*/2f(Z) for some Siegel cusp form f € S*(T) of weight &, i.e., the C-vector space isomorphism

S™(T) & ker (A(“) + %((n +1)— n)id) (1.8)

induced by the assignment f — det(Y)"/2f holds (See [27, corollary 5.4]).

Then, in a manner similar to (@I, we use the spectral decomposition of the heat kernel Kt(“’r)
corresponding to the Siegel-Maaf Laplacian A®*) on I'\H,, to generalize the relation in (L4 to obtain

Sk(Z) = Jim exp (— an(m —(n+ 1)) K" (2, 2). (1.9)

As, for t > 0, both the function exp(—nk(x — (n + 1)) t/4) and the heat kernel Kt(k"’F) are monotonically
decreasing in ¢, from (9], one also obtains the inequality

SU(Z) < exp (- %(m —m+1)t)K"(2) (> 0), (1.10)

whence analyzing the heat kernel K t('i’F), we arrive at the results stated in [Theorem 1.11

The non-triviality in extending these results from n = 1 to n > 1 lies in constructing the heat kernel
K t(”) corresponding to the Siegel-MaaB Laplacian A(*) on H,, from which the heat kernel Kt(”’r) on I"\H,
is obtained by periodization. We use a method of calculating spherical functions on real semisimple Lie
groups by reducing them to the complex case developed by Flensted-Jensen in [9] to construct a spherical
function for A®*) on H,, and then use the traditional method of obtaining the heat kernel from a spherical
function to construct K t(”). The spherical function and the ensuing heat kernel so constructed are not
totally explicit, as they involve a change of variable that is somewhat implicit in nature. In the end,
we got around this difficulty in the cocompact case by using a counting function argument to estimate
the periodization sum in Kt(”’r) with an integral of Kt(”) over the radial coordinates, which allows us to
change back from the implicit change of variables. In the cofinite case, we consider a limiting case of
Kt('i), which can be constructed explicitly. Thankfully, these special cases seem to suffice for our purpose.

1.5 Brief outline of the paper

In section 2 we gather some basic preliminaries on the symplectic group, Siegel upper half-space and
Siegel modular forms for later use in our calculations. In section 3 we gather the background on spherical
functions and construction of the heat kernel on symmetric spaces. Then we use the Flensted-Jensen
reduction method of calculating spherical functions on real semisimple groups via complex semisimple



groups to construct the spherical function as well as the heat kernel on the Siegel upper half-space. All
these calculations being for the Laplace—Beltrami operator A, next we correct them for weight-x to obtain
the heat kernel on Siegel upper half-space corresponding to the Siegel-Maass Laplacian A®). Finally, in
section 4, we analyze this weight-x heat kernel to obtain uniform sup-norm bounds for Siegel cusp forms
on average over an orthonormal basis in both cocompact and cofinite cases.
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2 Background on Siegel modular forms

In this section, we gather some basic preliminaries on the symplectic group, Siegel upper half-space and
Siegel modular forms from some standard references such as [10], [26] and [35].
2.1 Siegel upper half-space

For n € Ny and a commutative ring R, let R™*"™ denote the set of (m x n)-matrices with entries in R
and Sym,, (R) denote the set of symmetric matrices in R"*™. The Siegel upper half-space H,, of degree
n is then defined by

H,={Z=X+iY eC"™"|X,Y € Sym,(R) : Y > 0}.
The symplectic group Sp,,(R) of degree n is defined by
Spn(R) := {g € R**" | g'Jg = J,},

where J,, € R?"*2" ig the skew-symmetric matrix

In = <—(1)1n ]lon>
with 1,, denoting the identity matrix of R™*". The group Sp,,(R) acts by the symplectic action
H,>Z—gZ=(AZ+B)(CZ+D)™" (9= (48)€Sp,(R)) (2.1)
on H,,. Under this action Im(Z) transforms as
Im(gZ) = (CZ + D)"*Im(Z)(CZ + D)}, (2.2)

which, on taking determinants on both sides, gives

_ det(Im(2))
det(Im(gZ)) = Tdet(CZ 1 DIE

Similarly, taking matrix-differentials on both sides of the symplectic action (ZI]), it is easy to see that
under this action, the matrix-differential form dZ transforms as

d(gZ) = (CZ+ D)"*dZ(CZ + D)™ " (2.3)



The arclength ds? and the volume form du, on H,, in terms of Z = (2, x)1<j<k<n € H,, are given by

ds2(Z) =tr(Y'dzYy~1dZ) (Z =X +1Y),
A dz; . A dy;k (2.4)
1<j<k<n ,
dpn(Z) = det(Y)n+1 (Zjk = Tjk + @Yj.k)-

From equations (Z.2)) and (Z3) it is obvious that the arclength ds? and the volume form dy, on H,, given
by the above equations are invariant under the symplectic action. Corresponding to this metric, we have
the Laplace-Beltrami operator

s ({0 ) e () )

on H,,, called the Siegel Laplacian, which is also invariant under the symplectic action.

The geodesic distance s(Z, W) between the points Z, W € H,, is given by

s(Z,W) = ﬁ(img <1i7\/\/z:j)>1/2,

where p; (1 < j <n) are the eigenvalues of the cross-ratio matrix
WZW) = (Z-W)Z - W) Z-T)Z-T)"" (2, €H,). (2.5)

Remark 2.1. Due to the action (ZI)) of Sp, (R) on H,, the Siegel upper half-space can be viewed as a
Riemannian globally symmetric space Go/ Ko, where Gy = Sp,,(R) and Ky = Sp,,(R) N O2,(R) = U, is
the maximal compact subgroup of Sp,, (R) fixing the origin i1,, € H,,. An explicit correspondence between
Go/ Ky and H,, is given by gKo — gil,. Under this identification, the action of Gy by left translation on
Go/ K translates to the symplectic action (ZI]) of Gy on H,,. The space G/ K is equipped with a natural
metric coming from the Killing form on the Lie algebra go = sp,,(R) of Go. Under this identification,
this metric takes the form of the metric given by (Z4) on H,,.

2.2 Arithmetic subgroups and fundamental domains

A subgroup I of Sp,, (R) is called discrete if it acts discontinuously on H,, i.e., the orbit I'Z = {yZ | v € T'}
has no accumulation point in H,,, or equivalently, for any two compact sets K1, Ko C H,, the set
{y €T | v(K1) N Ky # 0} is finite. The most important example of a discrete subgroup of Sp,,(R) is the
Siegel modular group I';, := Sp,,(Z).

Definition 2.2. A subgroup I" C Sp,,(R) is called an arithmetic subgroup if I is commensurable to Ty,
i.e., the group I' N T',, has finite index in both I' and T,,.

Because of their commensurability with the discrete subgroup I',,, arithmetic subgroups of Sp,, (R)
are also discrete.

Any arithmetic subgroup I of Sp,,(R) has a fundamental domain, but it is not unique. A fundamental
domain of the Siegel modular group I';, can be explicitly constructed by means of reduction theory applied
to the positive definite imaginary part Y of Z € Hl,. A vector h* = (hq, ha, ..., hy) € Z™ is called primitive
if for 1 < k <n, we have ged(hg,...,h,) = 1.

Definition 2.3. A positive definite matrix ¥ = (yjx)i<jk<n € Pn is called Minkowski reduced if it
satisfies Y x+1 > 0 (1 <k <n—1) and for all primitive vectors h € Z™, we have h'Yh > yp 1 (1 < k < n).

Proposition 2.4. A Minkowski reduced positive definite matriz Y satisfies the properties

(1) y11 <y22<...< Ynn,
(i) |2y < w5 (1<j<k<n),

(’LZZ) Yk k+1 Z 0 (1 S k S n — 1),



(iv) there exists a positive number c1(n) depending only on n such that
det(YV) < H yi; < ci1(n)det(Y),
j=1

(v) there exists a positive number co(n) depending only on n such that

ca(n)7Y < YP < eo(n)Y,

where YP denotes the diagonal matriz made up of the diagonal elements y1 1, ..., Ynn of the matriz
Y, ie.,
Y1,1 0
YP =
0 Yn,n
Proof. See [10] Satz 2.5, Folgerung 2.6], [26, page 20]. O

Proposition 2.5. The set of points Z = X + 1Y € H,, satisfying the following criteria forms a funda-
mental domain %, of the Siegel modular group T'y,:

(i) |det(CZ + D)| > 1 for all (A 5) e Ty,
(i) Y =1Im(Z) is Minkowski reduced,
(iit) for all 1 < j,k <n, the matrizr X = (x1)1<jk<n Satisfies |z x| <1/2.

Proof. See [10] Satz 2.9]. O

The fundamental domain .%,, of I, is called the standard fundamental domain of I';, and the matrices
Z € %, are called Siegel reduced.

Proposition 2.6. If Z = X + Y € H,, is also Siegel reduced, then Y satisfies the properties

(i) yi1 > V/3/2.

(i) there exists a constant cz(n) > 0 depending only on n, such that' Y > cs(n)1y,.
Proof. See [10], Hilfssatzs 2.11 ,2.12]. O

Using the fundamental domain .%,, of the Siegel modular group I',,, we can construct fundamental
regions of other arithmetic subgroups of I" of Sp,,(R). Consider the space of the left cosets {I'y | v € ', }.
Since I'y; = I'ys if and ounly if (NT,)y = (I'NT,)y2 and [T, : T'NT,] < oo, they have a finite system
of representatives v1, vz, . .., Ym (m € N>1). Then,

F =] Fn (2.6)
is a fundamental region of T'.

2.3 Boundary of the Siegel upper half space

The Siegel upper half-space H,, can be realized as bounded domain I, = {¢ € Sym,(C)|¢{¢ < 1,}
through the Cayley transformation /: H,, — ID,, given by the assignment

Z (= (Z —il,)(Z +il,) Y, (2.7)
whose inverse [~ : D,, — H, is given by the assignment

(= Z=i(Ly + (L — )7 (2.8)



The topological closure of I, is given by D,, = {¢ € Sym,,(C)|¢¢ < 1,,}. Through Cayley transfor-
mation, the symplectic action on H,, induces an analogous action of Sp,,(R) on D,, given by

(él g) ¢= ((A-i0)c+ 1) +iB-iD)C - D) ((A+IC)C+1) +ilB+iD)C-D)

which extends to D, (see [30, page 15]).

Two points ¢, 7 € D, are called equivalent if they can be connected by a finite number of holomorphic
curves.

Definition 2.7. A maximal subset in I, of mutually equivalent points is called a boundary component
of D,,.

The space D, is divided into a disjoint union of boundary components. Moreover, the symplectic
action transforms one boundary component to another. Therefore, the division of D, into boundary
components is invariant under the symplectic action.

A-{(§ 2 foeopn

Then for all 0 < j < n, D/, is a boundary component. In particular, D, = D itself is a boundary
component. As

For an integer 0 < j < n, let

0<j<n

any boundary component P of ID,, can be realized as P = gDJ, for some g € Sp,,(R) and 0 < j < n (see
[30, page 17]). Hence, we call D/ a standard boundary component.

As D, is isomorphic to the bounded realization D; of the degree j Siegel upper half-space, we say
P = gD is a boundary component of degree j. If j < n, we call P a proper boundary component. For
two boundary components P7,P* of degrees j, k respectively, we write P/ < P* if P/ C P,. In that case
there exists g € Sp,,(R) such that gP/ = D/, gP* = DF and j < k.

Remark 2.8. This result can be extended to the case of a chain of boundary components
PO<...<P/.. <P !

where P/ is of degree j € {0,1,...,n — 1}. Then in that case we have a g € Sp,,(R) such that gP/ =
DJ (0 <j<mn).

Definition 2.9. Let P be a boundary component of D,,. Then the group P(P) C Sp,,(R) defined by
P(P) = {g € Sp,(R) [ gP = P}

is called the parabolic subgroup of Sp,,(R) associated to P.

For the standard proper boundary components P = D7 (0 < j < n), the groups P; := P(DJ) has the
structure (see [30, page 21])

A0 B %
*x u ok * A B

Pj = C, 0 D, % <C, D,> c SPJ(R), u e GLn,](R)
0 0 = wut

For a general boundary component P of D,,, realized as P = gDJ for some g € Sp,,(R) and some standard
boundary component D (0 < j < n),the parabolic subgroup P(PP) associated to P can be obtained as
P(P) = 9Py 9.



Definition 2.10. A boundary component P of D, is called rational if the parabolic subgroup P(P)
associated to it is defined over Q. The set

D = |_| P C D,

P rational
is called the rational closure of D,,.

Remark 2.11. If P is a rational boundary component of D,,, then there is a o € Sp,,(Z), such that P = D,
for some standard boundary component DJ, (0 < j < n).

The boundary components in the Siegel upper-half space H,, are obtained from the bounded realization
D,, via the inverse Cayley transform. We denote the standard boundary components on H,, by HY, :=
[7'DJ (0 < j < n). The rational closure H} of H,, is endowed with the cylindrical topology (see [30} page
35]). Under this topology, a sequence

Z(v) = @;8 2283) (v € Noo, Z(v) € Hy, Z11(v) € Hj)

~

on H,, converges to a point Z € HJ, = H; in H if and only if Z11(v) — Z in H; and Ya2(v) —
Y1,2(v)Y22(v)Y12(v) = oo in H,,—;. Under the assumption that Y7 2(v) is bounded, the latter condition
reduces to Y3 2(v) — cc.

In general, for any boundary component P of H,,, one can show that there exists a one-parameter
subgroup wp: R — G such that

lim wp(ﬁ)ilO = Op,

t—0

where O = i1, is the base point of H,, and Op is the base point of P. For P = HY, we denote wp by wj,
which takes the form

1, 0 0 0
0 tl,—, O 0

It is easy to see that in the above sense, w;(t)71il,, — il; € HJ, 2 H; as t — 0.
The parabolic subgroups P(P) defined in [Definition 2.9 can be characterized in terms of wp as

P(P) = {g € Sp,(R) | }ig%ww’(t)gw?(t)_l < oo}
We define
W(P) = {g € Sp,,(R)| lim we(t) gwp(t) " = 1}

Remark 2.12. Given Z € P, if for any sequence Z(v) (v € Nsg) in H, such that Z(v) — Z in H, we
have gZ(v) — Z for some g € Sp,,(R), then it is easy to see that g € W(P).

For P = HJ,, we denote W (PP) by W;, which can be shown to be (see [30, page 21])

1, 0 0 Q

_ Pt ln—j Qt B t _ pt t

Wi=ylo o0 %, _p||QPtB=rQ+B
0 0 0 L,y

Then, setting P = L!, Q = H! and B = LH® + S5, we have

{420 D 2o ) e e

where L, H € R("=)*J and Sy € R(=9)*x(n=3) ' gy — Gt
Next, for an arithmetic subgroup I" C Sp,,(R), consider the set M := I'\H,.



Theorem 2.13. The quotient M* := T\H} endowed with the quotient topology, is a compact Hausdorff
space. It contains M as an open everywhere dense subset. M™* is the finite union of subspaces M; =
(CNP(P;))\P;, where P; runs through a set of representatives of equivalence classes modulo I' of rational
boundary components of H,,. The closure of M is the union of M; and the subspaces M, of M; of strictly
smaller degree.

Proof. See [2], Corollary 4.11]. O

The above compactification M* of M is called the Satake-Baily-Borel compactification of M. For
I'=T,, = Sp,(Z), it takes the form

(T \H,, )* |i| T, NP)\H, = |i| (2.10)

Remark 2.14. By the remarks 2.8 and [ZT1] the group I',, acts transitively on the rational boundary
components of H,,. Hence, for any arithmetic subgroup I' C Sp(n,R), we only need to consider P; =
HE (0 < k < n) to fully describe the boundary of M = I'\H,,.

2.4 Siegel modular forms

Definition 2.15. A function f: H,, — C is called a Siegel modular form of weight x and degree n with
respect to the Siegel modular group I',, = Sp,,(Z) if it satisfies the following conditions:
(i) f is holomorphic,
(ii) f(vZ) =det(CZ+ D)*f(Z) forally = (A B) €T,
(iii) For every Yy > 0, the function f is bounded in the region Y > Yj.
We denote the space of all such functions by M?(T',,). For all S € Sym,,(Z), we have ('} ) el,

. Then f : H,, — C is a holomorphic function satisfying f(Z + S) = f(Z). Therefore, f has a Fourier
expansion of the form

f2)= Y aT)exp(2ri tx(TZ)),
TeSym,, (Q)
T half-integral
where T' = (tx)1<j,k<n being half-integral implies that ¢;;,2t;, € Z(1 < j < k < n). Also, since
U € GL(n,Z) implies (%t p21) € T, the function f satisfies
det(U)"f(U'ZU) = f(Z) (U € GL(n,Z)).

So, U € SL(n,Z) implies that f(U*ZU) = f(Z). One can show that a holomorphic function f: H,, — C
satisfying these two transformation behaviours, i.e., f(Z + S) = f(Z) for integral symmetric matrices S
and f(U'ZU) = f(Z) for U € SL(n,Z), under the assumption n > 2, has a Fourier expansion of the form

f(2)= > a(T) exp(2mi tr(TZ)). (2.11)
TeSym, (Q), T>0
T half-integral

In particular, for some Yy > 0, the function f is bounded in the region Y > Y. Thus, for I' =T, and
n > 1, condition (iii) follows from conditions (i) and (ii). This is the so-called Koecher’s principle.

Definition 2.16. Let f: H,, — C be a function so that the limit
Z 0
lim f <0 it> (Z e H,,—1)

t—o0

exists. Then we obtain another function ®(f): H,,—1 — C defined by
. Z 0
@)= (7 G)  Zemo.

This operator ®: M?(T,,) — M7~1(T,,_1) is called the Siegel ®-operator.

10



Definition 2.17. A Siegel modular form f € M?(T,) is called a Siegel cusp form if ®(f) = 0. We
denote the space of Siegel cusp forms by S7(T',,).

Proposition 2.18. A Siegel modular form f € M™(T',,) is a Siegel cusp form if and only if in the Fourier
expansion 2I0), a(T) # 0 implies that T is positive definite.
Proof. See [10] Hilfssatz 3.9]. O

Proposition 2.19. Let f € S2(T'y,) and let ¢ > 0. Then there exist positive numbers ¢1 and cg such that
[f(Z)] < erexp(—catr(Y))

for all Z € H,,, for which' Y is Minkowski reduced and 'Y > cl,,.
Proof. See [26], page 57] O

Next we define Siegel modular forms for arithmetic subgroups.

Definition 2.20. Let I' C Sp,,(R) be an arithmetic subgroup and v; € Sp,,(Z) (j =1,...,h) denote a
set of representatives for the left cosets of I' N Sp,,(Z) in Sp,,(Z). Then, a Siegel modular form of weight
k and degree n for I is a function f: H, — C satisfying the following conditions:

(i) f is holomorphic;
(i) f(vZ)=det(CZ + D)"f(Z) forally = (4 B) € I;

(ili) given Yy € Sym,, (R) with Yy > 0, the quantities det(C;Z + D;) ™" f(+;Z) are bounded in the region
{Z=X+iY € H, |Y > Yy} for the set of representatives v; = (A B]) €8p,(Z) (j=1,...,h).

We denote the space of all such functions by M7 (T"). Just as in [Definition 2,77 a Siegel modular
form f € M™(T') with respect to the arithmetic subgroup T is called a Siegel cusp forms with respect to
I if ®(f) = 0. We denote the space of all such functions by S (T").

For an arithmetic subgroup I' C Sp,,(R), define

HI) = {s € Sym, (R) ‘ <]10” f;) E r}.

Then ¢(T") is commensurable to ¢(T',,). Also, since ¢(T',) is commutative, [¢t(T'y,) : t¢(T', NT)] < 00 mphes
that there is an ¢ € N>y such that ¢¢(T") C ¢(I",,). Hence, f € MZ(T") satisfies f(Z 4+ £S) = f(Z) (S
Sym,,(R)). Therefore, the function f, defined by fo(Z) = f(£Z) satisfies fo(Z + S) = fo(Z), (S
Sym,, (R)) and hence has a Fourier expansion

fo(Z)=f(tZ) = Z a(T) exp(2mi tr(T2Z)),
TeSym, (Q), T>0
T half-integral

whence, replacing Z by Z/¢, we have a Fourier expansion of f of the form
o
£(2) = 3 a(T) exp (% tr(TZ)). (2.12)

TeSym, (Q), T>0
T half-integral

Just like in [Proposition 2.18] for a Siegel cusp form f € S?(T') for which, the Fourier coefficients a(T")
are 0 unless T is positive definite.

Proposition 2.21. Let f € SI(I') be a Siegel cusp form. Then, for the function

P(Z) = det(Y)"2f(2),

|p(Z)| has a mazimum in H,.

Proof. See [10, Bemerkung 6.10]. O
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Both M2(T") and S7(T") form finite-dimensional vector spaces over C. The space S7(T"), with the
Petersson inner product given by

(f. ) = / @YD) a2 (S € IO,

becomes a Hermitian inner product space.

2.5 Siegel Maaf3 forms and A®
In order to derive sup-norm bounds for cusp forms f € S?(T"), one introduces the function
o(Z) = det(Y)/2f(Z) (Z=X+iY € H,, f e S*(T))

with transformation behaviour

/2
det(CZ + D)) ), (2.13)

p(7Z) = det(Im(v2))"* f (vZ) = (m

for all v = (AB) € I'. We begin by defining a space V7(I') of real-analytic functions on H, that

transforms like (ZI3]) with appropriate growth conditions.

Definition 2.22. Let I' C Sp,(R) be a subgroup commensurable with Sp,,(Z), i.e., the intersection
I'NSp,,(Z) is a finite index subgroup of I' as well as of Sp,,(Z). We let v; € Sp,,(Z) (j =1,...,h) denote
a set of representatives for the left cosets of I' N Sp,,(Z) in Sp,,(Z). We then let V*(T') denote the space
of all functions ¢: H,, — C satisfying the following conditions:

(i) ¢ is real-analytic;
(ii) ¢(vZ) = det(CZ + D)*/? det(CZ + D)~"/2p(Z) for all v = (4 B) € I;
(ili) given Yy € Sym,,(R) with Yj > 0, there exist M € Rs and N € N such that the inequalities
| det(CyZ + D;)™"/% det(C;Z + Dy)*?p(v; Z)| < M tr(Y)N
hold in the region {Z = X +iY € H,, | Y > Y} for the set of representatives v; = (’éj gj ) € Sp,(Z)
(j=1,...,h).
Remark 2.23. For ¢ € V(T'), we set
ol = [ (2P ()
T\H,
whenever it is defined. In this way we obtain the Hilbert space
Hi(T) = {p € V(D) | [loll < oo}
equipped with the inner product
i) = [ AT Un(2) (v €MD),
T\H,
We note that in order to enable ||| < oo, the exponent N € N in part (iii) of Definition 2222 has to be 0.

To compensate for not being holomorphic, the functions of the form ¢(Z) = det(Y)*/2f(Z)(f €
S(T)) satisfy the property of being eigenfunctions of a certain differential operator introduced by Maaf}
that is invariant under the transformation behaviour (ZI3).
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Given Z = X +14Y € H,,, we start by introducing the following symmetric (n x n)-matrices of partial
derivatives:

(i) (i) = 71+6j’k 9
0X ik 2 8xj7k

(i) (i) 1445, 0
Yy ). 2 Oy

75
o _1(a .0
a_Z'_E(a_X_’a_Y)’
0 1
AR

0 w 0]
=
0X oy )’
Definition 2.24. Given a positive integer «, the differential operator A% given by

o\ o o\ o )
(k) _ 9\ 9 9N 9N _ v 9
A tr(y((yax) ax+(yay) ay) “Yax)

acting on smooth complex valued functions on H,, is called the Siegel-Maafl Laplacian of weight k.

=

o))

where §; . is the Kornecker delta symbol.

By its invariance under the transformation behaviour (ZI3)), the operator A acts on the Hilbert
space H(T") (see [27, Remark 4.6]).

Definition 2.25. Let I' C Sp,,(R) be a subgroup commensurable with Sp,,(Z). The elements of the
Hilbert space H(T") are called automorphic forms of weight k and degree n for T'. Moreover, if ¢ € H(T)
is an eigenform of A it is called a Siegel-Maaf form of weight k and degree n for T.

Theorem 2.26. Let I' C Sp,(R) be a subgroup commensurable with Sp,(Z) and let ¢ € HZ(T) be a
Siegel-Maaf8 form of weight k and degree n for T'. Then, if ¢ is an eigenform of A" with eigenvalue X,
we have A € R and

Az%(n—ﬁ—i—l),

with equality attained if and only if the function ¢ is of the form o(Z) = det(Y)*/2f(Z) for some Siegel
cusp form f € SH(T) of weight k and degree n for T'. In other words, there is an isomorphism

SH(T) = ker (A(“) + %(n — K+ 1)id)
of C-vector spaces, induced by the assignment f +— det(Y)”/Qf.

Proof. See [27] Corollary 5.4] O

3 Construction of the heat kernel

To use (LI0) to obtain sup-norm bounds for the quantity S.(Z), we need to obtain a somewhat explicit
form for the heat kernel Kt('{) corresponding to the Siegel-Maaf Laplacian A*) on H,,. In the theory
of harmonic analysis on symmetric spaces, there is a standard way of obtaining the heat kernel K,
corresponding to the Laplace-Beltrami operator A from the spherical function on the given symmetric
space, from which, one can use a weight-correction technique to obtain the heat kernel Kt('{) corresponding
to A Thus, the problem of obtaining a somewhat explicit form for K f”) on H,, translates to the problem
of obtaining a somewhat explicit form for the spherical function ¢, on Sp,,(R). It is difficult to do it
directly. Instead, we wield a technique developed by Flensted-Jensen in [9] of obtaining the spherical
function ¢ on a real semisimple group by reducing it to obtaining the spherical function ®, on the
corresponding complex semisimple group, which is much simpler.

In the first two subsections, we briefly recall the general theory of spherical functions on a real
semisimple group via the Flensted-Jensen reduction. The general reference for these subsections are [20]
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and [9]. In the third subsection, we recall from [12] and [I3], the general procedure of construction of
the heat kernel on a real semisimple group by spherical inversion. Then in the next two subsections we
implement this procedure for the special case of the symplectic group. Finally, in the last subsection, we
apply a weight-correction procedure to obtain the heat kernel on H,, corresponding to A,

But first, we need to fix some basic notations for this section.

3.1 Notation

Let g be a complex semisimple Lie algebra with a Cartan decomposition g = u + p corresponding to a
Cartan involution § on g. Let go be a non-compact real form of g. The Cartan involution 6 on g restricts
to the Cartan involution 6y on go. Let go = #g + po be the Cartan decomposition of gy corresponding
to the Cartan involution 6y on go. Then u = £y + ip is a compact real form of g and ¢ = €y + ity is a
complex subalgebra of g. Denote by a and ay the maximal abelian subspaces of p and pg, respectively.
We note here that £y, po and ag are related to € u, p and a via €g = €N g = uNge, o = pNgo and
ap=a do-

The Killing form By on go is just the restriction of the complex Killing form B’ of g, whereas the
Killing form B of g as a real Lie algebra, is 2B’. This means that the Euclidean structures on ag, induced
by By and B are different. Denote by (-, )¢ and || - ||o the scalar product and norm induced by By on ag
as well as (-,-) and || - || for the scalar product and norm induced by B on p. So in particular

1
||H||(2) = §||H||2 forall H € ap.

By the Killing form identification of ag and a with their duals, ay is embedded in a¥. The Euclidean
structures on the spaces a and p induce Euclidean structures on the dual spaces aV and pV, respectively,
by duality. Denote by (-,-)o and || - ||o the induced scalar product and norm on ay as well as by (-,-) and
[| - || the induced scalar product and norm on pV. So in particular

1
H)\Hg = §||)\||2 forall \€ay.

Let A be the root system of the pair (g,a), by which we mean that A is the set of restricted roots
for the real Lie algebra g with respect to the maximal abelian subalgebra a. Then each root space
g% (o € A) has dimension m, = 2. Let Ag be the restricted root system of the pair (go,ap). Then
Ag = {ala, | € A, # 0}. Let W and W, be the Weyl groups corresponding to the restricted root
systems A and Ag.

Let At and A{ be choices of positive restricted roots in the restricted root systems A(g,a) and
Ao(go, ag), respectively. Let a™ and aa’ be the corresponding choices of positive Weyl chambers in a and
ag, respectively. Let p and pg denote the half-sums (with multiplicity)

p:% Z Mo O = Z «a and pozé Zmaa

aEA+ aEA+ xeAd

of the positive restricted roots for (g,a) and (go,ap), respectively. Similarly, let 7 and 7y denote the
products of the indivisible positive restricted roots

() = H (a, Ny (Aea¥) and m(\) = H (a, ) (M€ ay), (3.1)

acAt (JLGASr

respectively.

Denoting n = > A+ g% and ng = n N go, the algebras g and go have Iwasawa decompositions
g=u+a+nand go = & + ap + ng, respectively.

Let G be a Lie group with Lie algebra g, and let K, U, A, N, Gy, Ky, Ag and Ny be the analytic
subgroups corresponding to €, u, a, n, go, £, a9 and ng. Corresponding to the algebra level Iwasawa
decompositions g = u+ a+n and go = € + ag + ng of g and g, respectively, the groups G and G
have the group level Iwasawa decompositions G = UAN and Gy = KgAgNy, so that the mapping
(u,a,n) — uan is a diffeomorphism of U x A x N onto G and Ky x Ag X Ng onto Gy. Let for g € G,
H(g) € a be determined by g € Uexp(H(g))N. If g € Gy, then we have H(g) € ao.
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The group Gy also has the polar decomposition Gg = KgAKy, by which, for each g € Gy, there is
an a € Ag such that g € KyaKy. If, for a particular choice of a positive Weyl chamber aar , We restrict

ourselves to A_('JIr = exp(ag ), then for each g € Gy, the choice of a € A7 such that g € KqaK), is unique.
It can be shown that the set C*°(Ky\Go/Kp) of Kp-bi-invariant C*°-functions on Gy, via restriction to
Ay, is in bijective correspondence with Cf; (Ao), the set of Wo-invariant C*°-functions on Ao.

Similarly, for the complex group G, we have the polar decomposition G = UA+U. Furthermore, G

also has the Mostow decomposition G = U Aar K, by which, for each g € G, there is a unique a € Aar
such that g € UaK. The set C°(U\G/K) is in bijective correspondence, via restriction to Ag, with the
set Oy (Ag) of Wo-invariant C*°-functions on Ay (see [J, Theorem 4.1]).

3.2 Spherical functions on G,/K,

Consider the Riemannian globally symmetric space Go/Ky. Let w: Gy — Go/Kp denote the natural
mapping of Gy onto Go/Kp and o € Go/K( denote the point o = w(e), where e € Gy is the neutral

element of Gp. If f is any function on Go/Ky, let f denote the function f = fon on G. Let D(Gy)
denote the set of all left-invariant differential operators on Gy, Dg,(Go) € D(Gy) the subspace of

=

D(Gy) containing left-invariant differential operators on Go which are also right-invariant under Ky and
D(Gy/Kp) the algebra of differential operators on G/ Ky invariant under all left translations of Go/K)
by Go.

Definition 3.1. A complex-valued function ¢ € C*°(Go/Ky) on Gy/ Ky is called a spherical function on
Go/ Ky if it satisfies the following properties:

(i) ¢(0) =1,
(ii) D¢ = Ap ¢ for each D € D(Gy/Ky), where Ap is a complex number,
(111) ¢(kogK0) = ¢(gK0) for all g € Go and kg € K.

The function 5 = ¢ o on (G is called a spherical function on Gy if and only if ¢ is a spherical function
on Go/Ko.

From the above definition it is easy to see that a spherical function 5 on Gy is characterized by the
following properties:

(i) éle) =1,

(i) Dé = Ap ¢ for each D € D, (Gp), where Ap is a complex number,

(iii) P(kogk() = ¢(g) for all g € Gy and all ko, k), € K.

As noted in the last subsection, due to the bi-invariance of q~5 under K, it suffices to know qz €
C>(Ko\Go/Ko) on the Weyl chamber Aj = exp(ag).

Remark 3.2. As the notion of spherical functions on the group Gy is equivalent to that on the symmetric
space Gy /Ky, for convenience, we denote the spherical functions on both Go and Gy/ Ky by ¢.

For a symmetric space G/ Ky of non-compact type, Harish-Chandra [I8] gave the following charac-
terization of spherical functions on Gy/Kj in terms of an integral.

Theorem 3.3. Let Gy be a connected semisimple Lie group with finite centre and Ko a mazimal compact
subgroup of Go. Then, as X runs through (af)V, the functions

oa(g) = /K exp ((iA — po)(H (gko))) du(ko) (g € Go), (3.2)

where du(ko) denotes the Haar measure on Ky, exhaust the class of spherical functions on Go. Moreover,
two such functions ¢, and ¢x are identical if and only if = o)X for some o in the Weyl group Wy.

Proof. See [20, Chapter IV, Theorem 4.3]. O
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Lemma 3.4. Let Gy be a connected semisimple Lie group with finite centre and Ky a maximal compact
subgroup of Go. Then, for a € Aa', we have

¢o(a) = exp(—po(log(a))).
Proof. Given the positive Weyl chamber ab” , let Tag denote the dual cone defined by
Yag:={H €ag|B(H,H)>0,VH €af},
and let *ag denote its closure. Then, by [20, Chapter IV, Lemma 6.5], for a € A, we have
log(a) — H(ako) € Ta (ko € Ko),
which implies that

po(log(a)) = po(H(ako)) (ko € Ko). (3.3)

Then, by Harish-Chandra’s characterization of ¢y (A € ay) in terms of the integral

N /K exp (i1 — po)(H(gko))) duko) (g € Go)

given in equation ([3.2), we have

do(a) = /K exp ( — po(H (ako))) du(ko)

> exp (= pollog(a))) [ dulko) = exp (= polog(a))) (€ 47),

thereby proving the lemma. O

Remark 3.5. In [18], Harish-Chandra gave a series expansion of ¢, with leading coefficients c(o)) (o €
Wo). This function, called Harish-Chandra’s c-function, features prominently in the theory of spherical
transforms and was explicitly determined by Gindikin and Karpelevic as a meromorphic function on
(a§)Y. In particular, for Gy = Sp,,(R), corresponding to the vector A = Ajeq + ...+ Aye, € a¥ =2 R (see

[subsection 3.5), Bhanu Murti [3] showed that

o =t 11 3y 1 250 (52)x
Sjxn

1<j<k<n

A=A (A = A
X H 5 th( 5 7r).
1<j<k<n

(3.4)

Definition 3.6. Let f be a smooth function on Gy which is bi-invariant under Ky. The function

~

f:ay — C defined by

) = [ r@os@auta) (e . (35)
is called the spherical transform of f at A € ay.

The next theorem states the crucial inversion formula for the spherical transform.

Theorem 3.7. For g = kiexp(H(g))k2 € Go (k1,k2 € Ko, H(g) € ao), define |g| :== B(H(g), H(g)).
Then the spherical L?-Schwartz space € (Ko\Go/Ko) is the space of all functions f € C(Ko\Go/Ko)
such that for all N € N> and D € D(Gy),

sup (1+1g)™[Df(g)| do(g) ™" < oc.
9€Go

Let . (ay) denote the usual Schwartz space on ay of rapidly decreasing smooth functions and Sw,(ay)
be the subspace of Wy-invariant elements. Further, let 7% (ay) (R € Rso) denote the set of functions f
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on ay satisfying the criterion that for each N € N>y, there exists a constant Cn € Rsq, for which the
function f satisfies the condition

[FN)] < Cn(@+ AT exp(R[Tm(A)]) - (A € ag)

and let A (ay) = Upso 5 (ay). Let Ay, (ay) and S (ay) denote the respective subspaces of Wo-
invariant elements. Then the following assertions hold:

(i) The spherical transform given by the assignment f — f induces a bijection of € (Ko\Go/Ko) onto
yWo (a(\)/)

(ii) Restriction of the domain of the above transform to C(Ko\Go/Ko) C € (Ko\Go/Ko) restricts the
bijection onto the subspace iy, (ay) T Fw,(ay).

(iii) For f € €(Ko\Go/Ko) and f € S, (ay), we have the formula, called the inverse spherical trans-
form, given by

1) = [ Fnar@le)| " ax (g€ Go),

where A\ denotes the Euclidean measure on ay /W.

(iv) As € (Ko\Go/Ko) is dense in L*(Ko\Go/Ko) and its image Fw,(ay) is dense in
L2(ag /W, ’c(A)‘_Q d)), the spherical transform given by the assignment f +— f

extends by continuity to an isometry of L*(Ko\Go/Ko) onto L*(ay /W, }c()\)r? dX), thereby giving
the equality

\
%9

| 15@P dute) = [ 1FOPe(] 2 ax
Go

Proof. See [20, Chapter IV, Section 7] and [I4], Sections 5 and 6]. O

One should note here that everything said above concerning spherical functions on real semisimple
groups Gy with respect to Ky applies equally to spherical functions on complex semisimple groups G
with respect to U, which is just the special case where g has a complex structure. However, using
Harishchandra’s series expansion of spherical function in in case of a complex Lie group G,
the spherical function on G takes the following much simpler form.

Theorem 3.8. Let G be a complex Lie group. Then the spherical function of G corresponding to A € aV
is given by

m(p) 2oew det(a) exp(ioA(log(a)))

¢ a) = - a € A+ 5
MO ) e i) explopliona)) <)
where T1(A) = [[ (a,\). Moreover, the c-function in this case is given by
a€At
c(A) = m(p)/m(iN).
Proof. See [20, Chapter IV, Section 5] O

3.3 Flensted-Jensen reduction

Now consider g as a Lie algebra over R. Let Dr(K\G) denote the set of right-invariant differential
operators on the coset space K\G = {Kg|g € G}.

Let

Co(K\G/U) = {d € C™(G) | d(kgu) = ¢(9)}-

The main result in [9] is the following theorem that enables us to lift many questions related to the analysis
of spherical functions on a real group Gy, to analogous questions concerning the spherical functions on
the corresponding complex group G.
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Theorem 3.9. There is a one-to-one correspondence induced by ¢ — ¢" between the set of spherical
functions ¢ on Go/Ky and the set of functions ¢ = ¢" on G satisfying

(i) ble) = 1,
(ii) Dip = App for all D € Dg(K\G), where A\p is a complex number,
(iit) ¢ € C=(K\G/U),

such that

$(90(9)~") = ¢"(9) (g9 € Go),
where O: Gy — Gy is the involutive automorphism of Gy such that (d©), = 6.

Proof. See 9], Section 5]. O

This allows us to identify C°(Ky\G/Ky) with C°(K\G/U) and write ¢ instead of ¢"7. Let ¢y (A €
ay) denote the spherical functions on Go/ Ky and ®5 (A € a¥) the spherical functions on G/U. If A € ay,
define A € a¥ by

A+ip=2(A+ipg).
Then we have

Balg) = /U or(ug) du(u) (g € G),

where dpu(u) is the normalized Haar measure on U. Under this setup, the following theorem enables us to
calculate spherical functions on non-compact real Lie groups from spherical functions on the corresponding
complex Lie group via an integral transform.

Theorem 3.10. Let go be a normal real form of the complexr Lie algebra g. Assume that the Haar
measure du(k) on K is normalized such that on compact groups the total mass is 1 and on non-compact,
d-dimensional spaces the measure is (21)~%? times the volume element so that the Euclidean Fourier
transform is an isometry. Then, the spherical functions ¢y on Go/Ko and @5 on G/U are related by the
equation

o (g0(9) ) = eV Plmo(V)? /K Box(kg) du(k) (A€ ay). (3.6)

In particular, we have
le(N)|7? = Iﬂo(/\)IQ/K%A(k)du(k) (A € ag).

Proof. See 9, Section 7]. O

3.4 Heat kernel on Gy/K)

Let Ax be the Laplace-Beltrami operator on X = Go/K, corresponding to the natural metric on X
defined by the Killing form B on go. Then Ax can be shown to be descending from the Casimir element
w € U(go) of the universal enveloping algebra U(go), which, subject to a choice of basis {X,}1<;<n of
go, can be defined as the sum

W = zn:X;X],
j=1

where {X7}1<j<n is the dual basis with respect to the Killing form B on go (see [20, p. 331]). The
spherical function ¢, (A € ay) is then an eigenfunction of Ax with eigenvalue A, = —({po, po)o + (A, A)o)
(see [20, p. 427]), i.e.,

Ax(b,\(l'):)\w(ﬁ,\(l') (SCGG()/K(),AGGB/).
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Definition 3.11. The heat kernel on Go/Kj is the fundamental solution K;(z) € L?*(Go/Ko) for each

t > 0 to the heat equation

au(;il') = AXut(a:) (t >0,z € Go/Ko)

uo(z) = f(x) (feC)
in the sense that for any f € Cg°, its convolution u; = f* K is a solution to the above equation satisfying
| f* K|, = 0ast—0.

(3.7)

In [12 13], Gangolli, using spherical transform, constructs a function K; that has the standard
properties of the fundamental solution of the heat equation on Go/ K.

Theorem 3.12. Let €(Ko\Go/Ko) be the L*-Schwartz space defined in [Theorem 3.7. The function
K;: Go/Ko — R (t > 0) defined by

Ki(z) = / exp(Aw t) da () [e(N)] 72 dA. (3.8)
a\/
satisfy the following properties:

(a) K € €(Ko\Go/Ky) for each t > 0.

(b) Ki(\) = exp(A, t) for all X € aV.

(¢) Kt * Ks = Kyt forallt,s > 0.

(d) For any f € C, f* K is a solution to the equation 0/0t = Ax and||f * K[|, — 0 ast — 0.
Proof. One obtains (b) by taking a spherical transform of the heat equation (8.7)). Then (B.8]) is obtained

by taking an inverse spherical transform of (b). For further details on the proof, see [I2, Proposition 3.1]
and [I3}, Theorem 1]. O

3.5 Spherical function on H,

In this section, we obtain the spherical function on Sp, (R)/U,(R) = H,, by using the general procedure
for obtaining spherical functions on Riemannian symmetric spaces via the Flensted-Jensen reduction
established in [subsection 3.31 But first we need to specialize the general notation in [subsection 3.1] for
the symplectic group in order to have a more explicit structure for these groups and algebras that in turn
is essential for obtaining a more explicit structure for the spherical function and the heat kernel in this
particular case.

The Lie algebras shall as usual be denoted by gothic letters. Let

A B nxn
oo{(t 5) ncera-menc)

denote the real symplectic algebra sp,, (R), while g shall denote the complex symplectic algebra sp,,(C) =

go+igo. On g, we have the Cartan involution §(X) = -X' (X € g), which restricts to 6p(X) = - X' (X €
go) on go. Accordingly, we have the Cartan decomposition g = u+ p of g into the (+1)-eigenspace

_ A B nxn _ —t _ t
u_{<§ Z) ’A,BEC ,A_—A,B_B}.

and the (—1)-eigenspace

p{<% _BA> ’A,BGC”X",AZt,BBt}_

of #. Similarly, we have the Cartan decomposition go = €y + po of go into the (+1)-eigenspace

eoz{(AB i) ’A,BER"X”,A:—At,B:Bt},
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and the (—1)-eigenspace

— A B nxn _ nt _ At
o { (4 ) |amere s naa

of 90.

Remark 3.13. We note here that u is the symplectic unitary algebra u = sp,, (C) N ug, while & is the
symplectic real orthogonal algebra ¢, = sp,,(R) N 02,(R). The subalgebra ¢ = £, + ity is then given by
the symplectic complex orthogonal algebra ¢ = sp,, (C) N 02, (C).

The maximal abelian subspaces a and ag of p and pg, respectively, are given by the diagonal elements

in p and po, respectively. As the elements of p = {X € g| X = Yt} are Hermitian and the elements of
po = {X € go| X = X'} are symmetric, the diagonal entries in both p and pgy are real. Therefore, we

have
r 0
R 0 ! .
aao{r< B )‘R( >,7’j€R,1§j§n}.
0 R 0 r

. As a = ag, we drop the distinction and from here on denote both by a.

The basis of the dual space a¥ shall be denoted by {e1, €2, ...,e,} such that e;(r) =r; (r€a, 1<
j <n). The generic element of a¥ shall be denoted by A = Aje1 + ...+ A\pen, (A € R, 1 <j <n).The
Killing form on g is given by

B(X,Y) =2(n+1)tr(XY).

Let E; 1 (1 < j,k < 2n) denote the (2n x 2n)-matrix with entry 1 where the j-th row and the k-th column
meet, all other entries being 0. Using this Killing form, we can assign to each basis vector e; (1 < j < n)
in aV an element

1

Hj = m(Em‘ —Entjntj) €9 (1<) <n),
so that B(Hj,r) = e;(r). This assignment induces a scalar product on a* defined by

0j.k

(ej,ex) == B(Hj, H) = m

The roots of g corresponding to a are given by
A={£2e; |1 <j<n}U{xejter|l<j<k<n}

with each root space g* (o € A) having real dimension (and hence root multiplicity) mq = 2. As a = ao,
for roots of gy corresponding to ag, we have Ay = A. However, in case of the real algebra gg, each root
space g§ (« € Ap) has real dimension 1. The Weyl group W = W consists of the permutations o: a — a
of elements r € a, i.e.,

0= (8 ) =W 4 e o= )() re s

Consequently, we have W = Z/nZ x Sy,.

The canonical choice of positive roots in A is given by
At ={2;[1<j<n}U{ej+er|1<j<k<n}U{ej—er|l1<j<k<n}. (3.9)
Thus, the half-root sum pg = 1/23° A+ maa in the real algebra go is given by
pp=ner+n—1e+...+n—j+1ej+...+2e4_1+e,

and the half-root sum p in the complex algebra g is given by p = 2 pg. Corresponding to the choice ([B.9)
of positive roots, the positive Weyl chamber a™ of a is given by

T1 0
a+{r<§ _OR>‘R< >,r12...zrjz...rnzo}
0 Tn
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and the nilpotent algebra n =) .+ g* is given by

n= { (Ig %t) ’ P,Q € C"*", P strictly upper-triangular, Q symmetric},

wherefrom ng = > -1+ g§ can be obtained by restricting to go.
0

Groups shall as usual continue to be denoted by capital Roman letters. In particular, Gg shall
denote the real symplectic group Sp,,(R), while G shall denote the complex symplectic group Sp,,(C). By
Remark 3.T73] the subgroup Ky = exp(ty) C Gy is given by the real orthogonal subgroup Sp,, (R) N Oz, (R)
of Sp,,(R), while K = exp(¥) C G is given by the complex orthogonal group Sp,,(C) N Oz, (C) of Sp,,(C).
Group elements, i.e., the matrices in the matrix groups shall continue to be denoted by small Roman
letters. The scalar entries of the matrices shall also be denoted by small letters, while matrix-blocks in
matrices written in a block-matrix format shall be denoted by capital letters.

Both real and complex symplectic orthogonal matrices have the same structure

_ A B t t _ t __ t
k_(B A) (AA' + BB = 1,,, AB! = BA"),

but while for k € K this implies that the matrix A+¢B is an (n x n)-unitary matrix, no such implication is
possible in case of complex orthogonal symplectic matrices k € K\ Ky. However, any complex orthogonal
matrix k € K can be represented as k = kg kj,, where kg € Kj is a real orthogonal matrix and kj is a
Hermitian orthogonal matrix (see [I5, Theorem 1]). Therefore, a general k € K can be represented by

h_ (A B\ (A B
“\-B, 4,)\-B A

such that Ay + 9By is (n x n)-unitary and A + iB is (n x n)-Hermitian.

The group A = exp(a) is given by the group of real diagonal symplectic matrices

- {exp(r) _ (expO(R) 0 R)) ‘R: ( __.TO ) r; € R, 1§j§n}. (3.10)

exp(— 0 )

By [Remark 3.13 the group U = exp(u) C G is given by the unitary subgroup U = Sp,,(C) N Us,, = Sp(n)
of Sp,,(C), whose elements can be shown to have the structure

U:{(AE g) ‘A,BGC”X",AZt+B§t:1n, AszBAf}.

The group N = exp(n) C G is given by

N = { (Ig PQt) } P,Q € C™™", P unit upper-triangular, PQ" = QPt},

wherefrom Ny = exp(ng) € Go can be obtained by restricting to Go.

The Haar measures of the groups shall be denoted by du(z), while the Euclidean measures shall be
denoted by dz.

This prepares the setup needed to compute the spherical function on Sp,,(C) corresponding to A € a
using the formula

By (exp(r)) = ). Ligew detlo) exp(io(r))

— w(@A) X, ew det(a) exp(op(r)) (3.11)

in fequation (3.13) The quantity

7(p) = H <2n€1+---+2(nfj+1)ej+...+26n,a}
aceAt

will come out to be a positive real constant depending only on n. Since we are not interested in the exact
nature of this dependence and keeping track of these constants soon get quite tedious, we shall club all
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such constants which are not crucial to our calculation under the generic symbol ¢,, which should be
interpreted as a positive real constant depending only on n.

The quantity 7(i)) is of the form
, 2 2 Aj+ A Aj— A
w(iA) =" H =7 H SAVERIALS H N T Ak
1<j<n An+1) 1<j<k<n An+1) 1<j<k<n 4n+1)

The above homogeneous polynomial of degree n? plays a crucial role in our analysis. Let us formally
denote it by

e i=cn A x) = [T N T i+ I v =)

1<j<n  1<j<k<n 1<j<k<n
Under transpositions o, € W given by the assignment
Ay Ny, Ay An) = (A, Ay o Ajy oy An)
and sign-changes o; € W given by the assignment
(Ao Ady o An) = (A, o, =gy o An),s

we have ok (A; + Ae) (Aj — M) = = (A + M) (A — A) and 05 (A + ) (Aj — Ae)) = (Aj + ) (A; — Ae),
respectively. Thus, in both the cases we have e(0; () = —¢(A) and €(0;(N)) = —e()\). Now, since the
Weyl group W is generated by these transpositions and sign-changes, the polynomial ¢ for any formal
variable A = (A1, ..., \,) satisfies the property

e(0(\) = det(0)e(a(N) (o € W). (3.12)

Next we consider the denominator ) .y, det(o) exp(op(r)) in the right-hand side of the

As p =73 ca+ @, this denominator can be expressed in the form
> det(o)exp(op(r)) = [ (exp(a(r)) — exp(—a(r))),
ceW acAt

whence we obtain

Z det (o) exp(op(r)) = 2" H sh(2r;) H sh(r; +rg) H sh(r; —rg).

ceEW 1<j<n 1<j<k<n 1<j<k<n

The product of the sh’s on the right-hand side of the formula would also play an important role in our
later analysis. We formally denote it as

i(r) == H sh(r;) H sh(wTTk) H sh(%).
1<j<n 1<j<k<n 1<j<k<n

This gives us the formula

Cn > sew det(a) exp(ioA(r))

Oa(exp(r)) = =5 c(\)o6(2r)

(3.13)

for the spherical function on Sp,,(C) corresponding to A € a¥ at exp(r) € A. An interesting limiting case
of this formula is to determine the spherical function on Sp,,(C) corresponding to A = 0 at exp(r) € A,
which we consider in the next proposition.

Proposition 3.14. The spherical function on Sp,,(C) corresponding to A = 0 at exp(r) € A is given by
the formula

) _ g ot o
et =aggy=a I gom 1 s 1wt

1<j<n 1<j<k<n 1<j<k<n

where ¢, denotes a constant depending only on n.
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Proof. We begin by defining a polynomial differential operator
e(0/0N) :==¢e(0/0M,...,0/0Nj,...,0/0\,).

Since both the numerator and the denominator in the formula

. 2gew det(o) exp(ioA(r))
i e(A)o(2r)

Dy (exp(r)) =

are analytic at A = 0, the limit at A — 0 can be calculated as

Bo(exp(r)) = lim &2 Zeoew deU) xP(oA(r))

X0 412 e(N)d6(2r)
o 9/ ( Y, ey det(o) exp(iJ)\(T)))
T 82 As0 £(@/ON(N) ’

provided both the derivatives converge at A = 0.
Now, since 0/0\;(exp(ioA(r))) = o(ir;)exp(iocA(r), it is easy to see that
g(0/0N) exp(ioA(r)) = e(io(r)) exp(iocA(r)),
which, by the property (B12) of £, becomes
e(0/0N) exp(iocA(r)) = i det(o) e(r) exp(ioA(r)). (3.14)
T}21us, the derivative of the numerator by €(9/9)), in the limit A — 0, converges to i det(o)%e(r)|W| =
i" e(r)2"nl.

For a monomial AT" --- X737 -~ A% (aj € N>o, Y7y j = n?) and a differential operator

(0/07)™ .. (0/0X;)% . (0/0A)" (B €Nzo, D5 =D _aj =n?),

j=1

aﬁl ) < aﬁ] ) < aﬁn ) a.
-l = )| o ()\‘fél...)\_ﬂ...)\zn)
<aA§’ O\ N !

n

(o +1
H% fora; =8; V1<j<n,

we have

j=1
0 otherwise.

Therefore it is easy to see that £(0/0X)e()) is a constant depending only on n and hence we have the
requisite limit stated in the proposition. O

Next we apply [Theorem 3.10] to calculate the spherical function ¢y on Gy = Sp,,(R) corresponding to
A € ay by reducing it to the complex case.

Theorem 3.15. The spherical function ¢x on Go = Sp,,(R) corresponding to
)\:/\1€1+...+Aj€j+...+An€nEav

at exp(r) = (eXpo(R) exp(O_R)) € A with

R = (TjERzo,lgjgn),
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s given by

B ZUEW det(o) exp (Z'J)\(g(r, k)))
o (exp(r)) = / 500 k) du(k), (3.15)

keK

where o(r, k) is the diagonal matriz o(r, k) = (P(g’k) _P((JT k)) with

o1(r, k) 0
P(rk) = (0j(r,k) €eR, 1 <j<n)
0 on(r, k)

related to r = (§ %) via the matriz equality keXp(?‘)Et = wexp(o)u' with k € K and u € U. The
functions T and § are given by

W= I n(3e) I a5 I a(*5%)

1<j<n 1<j<k<n 1<j<k<n
_ ‘ 0j + 0k 0j — Ok
d(o0) = H sh(o;) H sh(T) H sh(T),
1<j<n 1<j<k<n 1<j<k<n

while ¢, is a positive real constant depending only on n.
Proof. We begin by putting x = exp(r/2) in [Theorem 3.10, so that 20(x)~! = z2! = exp(r), and we have

oaexp(r)) = [e(N)?|mo (M) / ©ox(kexp(r/2))du(k) (X € ag), (3.16)
keK

where ®9y is the spherical function on the complex group G' = Sp,,(C) corresponding to 2\ € a’. As
kexp(r/2) € G, from the G = UA+U decomposition of the complex group, we obtain o(r, k) € AT and
u,v € U, so that g = kexp(r/2) = uwexp(o(r, k)/2)v € G. Therefore, we have

gg' = k:exp(r)%t = uexp(o(r, k))u’. (3.17)
Furthermore, since the spherical function ®2) € C*°(U\G/U) on G is bi-invariant under U, we have
Do (kexp(r/2)) = Box(uexp(o(r, k)/2)v) = Bax(expla(r, k) /2)).
Now, we plug in the formula for ®5)(exp(o(r, k)/2)) in using the formula (313)) to obtain
[c V)P Imo (M) / 2oew det(o) exp(io2A(e(r, k)/2))
ke

Pa(exp(r)) = cn e2N) 5ol ) du(k). (3.18)

Now 2A(o(r, k)/2) = Mo(r, k)), so the numerator inside the integral becomes

Z det(o) exp(ioA(o(r, k))).

oceW

Next €(2)) = 2"25()\) and the positive real constant o’ gets assumed within the generic ¢,. Also, from
the formula

gt I Y03 L 24 0 (1),

1<j<n 1<j<k<n
A=A (A= A
X H 5 th( 5 7T)
1<j<k<n

for the Harish-Chandra c-function on Sp,,(R) due to Bhanu Murti mentioned in [subsection 3.2} it clearly
follows, that in terms of the special functions € and 7 introduced to make our calculations less cumbersome,
the above formula can be simply written as

V)] = cne(MNT(N). (3.19)
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Thus, noting that

2\, PPEDY = |?
mP=| I iy I gy T1 gity] =eeo

1<j<n AT 1) 1<j<k<n 4n+1) 1<j<k<n 4n+1)
we see that [c(\)[2|7o(M)]? = ¢, (1/7())), which brings the integral in the right-hand side offequation (3.18)]
to
cn > oew det(o) exp(ioA(e(r, k)))
= du(k
rtentn) —y | 3((r. ) 1o
kEK
thereby proving the theorem. O

Remark 3.16. Since the real symplectic matrix exp(r) = (exPO(R) exp(O_R)) € AC Gy = Sp,(R) maps

the point ¢1,, € H,, by symplectic action to Z = i exp(2R) € H,, and ¢ (exp(r)) € C*(Ko\Go/Kp) is
a radial function on H,, the formula for ¢, in the above theorem also gives the formula for spherical
function on H,, at a point Z = kg iexp(2R) € H, (ko € Ko) and hence is also denoted by ¢ (2R).

3.6 Heat kernel on H,
In this section, we obtain the heat kernel on H,, by following the general procedure established in
ubsection 3.91 We continue with the notation and the basic setup fixed in [subsection 5.5

We begin by computing the eigenvalue A, = —({po,po)o + (A, A)o) for the Casimir operator w on
Go = Sp,,(R). For the basis vectors e; (1 < j < n) in ay, the inner product induced by the Killing form
of go on ay takes the form

5 .
. _ Jr < < .
<6J56k> 4(7’L+1) (1_],]{_71)

Then, for the half-root sum
pp=neir+n—1e+...+(n—j+1ej+...+2e,_1+ey
in go, the inner product (po, po)o turns out to be

124224+...4+n2
4n+1)

<P0,/)0>0 =

Similarly, for A = Aje; + Aaea + ... + Apen € ay, we have

MAN 4.+ A2

(A Ao = An+1)

the Casimir operator w on Gy = Sp,,(R) descends on the Siegel upper half-space H,, := {Z = X +
iV X,)Y e R X = X' Y =YY" Y >0} to the operator

1 a\" o a\' o
A= tr |\ Y( (Y == | == Y — | — .
CEY r( << aX> 6X+< ay> ay>>
Traditionally, this factor of 1/(n + 1) is ignored and the Laplace—Beltrami operator on H,, is written as
d\" o 1\ o
A= YIY —= | =—= Y — | —
tr( (( ax) 8X+( ay) ay))’

due to which, we correct the value of A\, calculated above by multiplying it with a factor of (n + 1),
thereby setting

Z?:l j2 + Z:;l:l A?
1 .

Now we are ready to compute the heat kernel K; on H,, using[Theorem 3.15 and the formula (3.8)), which
is the subject of the next theorem.

Ao = —
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Theorem 3.17. The heat kernel K; at a point Z = koiexp(2R) € H,, on the Siegel upper half-space
with kg € Ko and

T1 0
R = (TjERzo,lgjgn),
0 Tn
s given by
o (X ) s Bes (-5 aik2/)
o) e =t | 3ol ) Ho)
keK
. ) ) _(P(rk) 0 .
where o(r, k) is the diagonal matriz o(r, k) = ( o —p(r k)) with
o1(r, k) 0
P(r,k) = (0j(r,k) R, 1 <j<n)
0 on(r, k)

related to r = (g 70R) via the matriz equality kexp(r)%t = uexp(o)u’ with k € K and u € U. The
functions € and & are given by

e@= ] & II (ei+te) [ (o5—ox)

1<j<n  1<j<k<n 1<j<k<n
05 + Ok 05 — Ok
o= T1 wer T1 a(252) T w(%5%)
©= T1 shie) T b(22%) I (25
1<j<n 1<j<k<n 1<j<k<n

while ¢, is a positive real constant depending only on n.

Proof. In[Theorem 3.15] we had calculated the spherical function ¢, corresponding to
A=Xer+...+Aej+...+ e, €a’
at Z = ko iexp(2R) as

G [ Soew detlo) explioA(o(r, k)
o)~ | SRS

Z’ﬂ

dp(k),
keK

Therefore, using the formula (B.8]), we have

K,(2R) = ZCT" exp ( - Zj2t/4) / % du(k) (3.20)
J=1 kEK ’

where the function I(o(r, k)) given by the integral

I(o(r, k) = Z det (o) / |CS_)(\1\|)_ exp ( - Z)\?t/él + ia)\(g(r,k:))) dA.

ceW AcaV

As we noted in fequation (3.19)] the quantity |c(\)|=2/7()\) is just the polynomial c,e()\), where ¢, is a

positive real constant depending only on n . So our integral simply becomes

I(o(r,k)) = cp Z det(o) / g(\) exp ( — Z )\?t/4 +ioA(o(r, k))) d).

oew A€aV

Also, as in[Proposition 3.14] we had noted injequation (3.14)[that for the polynomial differential operator
e(0/0N) :=¢e(0/0M,...,0/0Nj,...,0/0\,) we have

€(0/0N) exp (io)\(g(r, k))) - det(o) e(o(r, k)) exp (iax\(g(r, k))),
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the integral I(o(r, k)) reduces to calculating the derivative by £(0/0X) of the integral

Io(o(r, k) = > /exp(—i)\?t/él—i—ia)\(g(r,kz))) dA

UEW)\EaV

as we have ¢, £(8/0N)Io(o(r, k)) = " I(o(r, k)). This last integral splits into integrals over the individual
Aj-s (1<j<n)as

o(r k) =Y H / exp (= A%t/4 +iXjo(o(r,k))) dX;.
ceW j=1 _

But as we saw before, these individual integrals over A;-s are simply

2/ exp ( —o(o(r, k))Q/t)
7 )

oo

/ exp (— )\?t/4 +iXjo(o(r, k))) dx =

)\j:—oo

Therefore, their product over 1 < j < n becomes

iy / exp (— A2t/4+ ixyo(e(r ) ds = B e (3 o(lr

Jj=1

However, as we have >>7_, o(o(r, k))? = >y 05(r, k)2, the integral In(o(r, k)) evaluates to give

Io(o(r, k) = ti% exp ( — z": 0;(r, k)2/t).

Therefore, we have

Cn

Cn, =
I(o(r, k) = = £(2/0NIo(e(r, k) = =7 e(—a(r.k)/t) exp - > oilr ) 2t).
Now as ¢ is a homogeneous polynomial of order n?, we have
.n2 n
Cn @
Lo(r, k) = s ee(r k) exp (= 3 o k)?/1).
j=1
Putting this back to [equation (3.20), we have the theorem. O

3.7 weight-x correction

We continue with the notation in subsections and Given a function f: Go/Ky — C and g € Gy
define the function f9: Go/Ko — C by f9(x) := f(¢~'z) (x € X = Go/Ky).

As the spherical function on X is supposed to be invariant under the left action f +— f9 (g € Gp) of
the elements of Ky on the functions f: X — C, it is constructed by having an eigenfunction u of the
invariant differential operators D € D(Gy/Ky) acted upon by elements kg € Ky and then integrating
over Ky to produce an eigenfunction ¢(z) = fkoEKo uko(x) du(ko) of D € D(Go/Kp) that is invariant
under the action f + f*o (kg € Ky) of the elements of Ky. This is called the method of images and this is
basically how one obtains Harish-Chandra’s characterization of the spherical function on the symmetric
space G/ Ky as the integral ([3.2]).

However, the action f +— f9 (g € Go) of the elements of Gy on the functions f: X — C of X that we
have considered in this process is the one that is normally considered in case of group actions, i.e., the
action f +— f9 (g € Gy) of the elements of Gy on the functions f: X — C, where f9: X — C is given by
the assignment z +— f(g~'z). One can instead introduce a weight factor, i.e., a function j: Go x X — C
satisfying

J(91 92, ) = j (91, 927) j (g2, ®) (3.21)
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and consider the action f +— fjg (h € Gy) of the elements of Gy on the functions f: X — C, where

ff: X — C is given instead by the assignment z + j(g~1,2)f(g 'z). Then, to compute a spherical

function ¢;, i.e., an eigenfunction of the invariant differential operators D € D;(Go/Ky) that is invariant
under this action of the elements of Ky, we must have an eigenfunction u; of D € D;(Go/Kjy) acted upon
by this action of the elements of Ky and then integrate over Ky to produce

bi(x) = / itk ) (k) duho).

In [Subsection 2,51 we had considered one such weighted action of symplectic matrices due to Maafl
and obtained a Laplacian invariant under this action. As we eventually want to construct the heat kernel
for this weight-x Siegel-MaaB Laplacian A(), in this section we adapt the computation of the spherical
function and the heat kernel on H,, in subsections and for the weight-x case.

As introduced in (2I3), the weight-x action of a real symplectic matrix g € Go = Sp,,(R) on functions
f:H, — C on H, is given by

1

19 (2)=3x(9.2)f(9Z) (g€ Go, Z € Hn), (3.22)

where the weight-factor j. (g, Z) is given by

Ju(g, 2) = (%)W (g = (é g) €9p,(R), Z € Hn).

It is easy to check that the weight-factor j, satisfies the property (B.2I)).
The functions f: H, — C on H,, can be lifted to functions f: Sp,,(R) — C defined by

F(9) = ju(g,iln) f(gily).

There is a one-to-one correspondence between the functions on f: H,, — C on H,, that satisfy
1(2)=jxd,2)f(dZ) (Z=gil, € Hy,)

for some ¢’ € Gy and the functions f: Gy — C on Gy that satisfy

(i) f(g'g) = flg) forall g € Gy

(i) f(gko) = ju(ko,il,)f(g) for all g € Gy and ko € K.
Therefore, to compute the weight-x spherical function on H,,, we need to integrate over the action

740 (9) = Gulho, i10) ™ f (ko 9)
of Ky on Gy, which takes the explicit form
. K/2
o det(A +1iB) ~ A B
when we write kg in the familiar block-matrix form for symplectic matrices.

However, this lifts the weight-x action of Gy on H,, to G, while as our computation of the spherical
function, made by reducing it to the complex case, takes place in the complex group G, we need to
determine this action in G. As in the complex reduction method, we consider the Lie algebra g = go +igo
of G as a real Lie algebra, its elements are canonically embedded in the space of (4n X 4n)-real matrices
as

Re(X Im(X)
X (In(l()g) ReEX)) (X €g).

Therefore, the elements of G are also canonically embedded in the space of (4n x 4n)-real matrices as

g=exp(X)— (Rlir(lg(;) EEEZ;) (9 € G).
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Accordingly, the element i1,, € H,,, under this canonical embedding of (n X n)-complex matrices into
(2n x 2n)-real matrices takes the form

. 0 1,\

il,, — (]]-n 0) =J,.

This gives us the weight-x action of K on the functions f: G — Con G as

¥ 9) = juk, ) flkg) (k€ K, g€ Sp,(C)),

where the weight-factor j, is of the form

'  (det(Re(k) + Im(k)J,) \ "/
]n(k, Jn) - (det(Re(kj) — Im(k)Jn)>

Now writing k € K as k = ko kn, where ko is real orthogonal and kj is Hermitian orthogonal, by the
property (B21) of j., we have j.(k, Jn) = jx(ko, knJn)jx(kn, Jn). Since kg is real orthogonal, Im(ky) = 0
so that jn(kO; kth) = 15 thereby giVing jn(k; Jn) = jn(khv Jn)

To calculate j,(kp, J,) more explicitly, we need to write k; in the block-diagonal form

kn = (AB i) (AAt + BB* = L, AB' = BAta A= Zta B = _Et)‘

The matrix h := A + iB is obviously (n x n)-Hermitian. The orthogonality condition AA! + BB! =
1,, ABt = BA? can be restated as

(A+iB)(A' —iB") = 1,,

so that, we have A—iB = h™*. As h is Hermitian, this also implies that A —iB = E_l. Then to calculate
det(Re(k) + Im(k)J,,) explicitly, we have

det(Re(k) + Im(k)J,)

w[(403% 13)- (4 4 B) (2 W)
- (AT G A dR))
whence using the relations
A+iB=h, A—iB=%h ' A+iB=h"', A-iB=h, (3.23)

it follows that
det(Re(k) + Im(k)J,,) = det [ @(h + %) —%(h - E))) }

= det [ (Rli(f(bf)b lm

=}

[©)

—~

=

= —
=

Now, since for any two (n x n) real matrices X, Y, we have

det { <_)§/ §) ] — det(X) det(X + YX1Y) = | det(X + i),

we have here det(Re(k) + Im(k).J,) = |det(h)|? and similarly, det(Re(k) — Im(k)J,) = |det(h™1)[?,
thereby giving

Gk, Jn) = je(kn, Jn) = det(h)?* <kh = <_AB Z) ,h=A+1iB, h hermitian).

To obtain the weight-« spherical function on H,,, we need only to multiply the integrand infequation (3.15)|
in [Theorem 5.15 with this weight-factor corresponding to k € K. We restate this result as a theorem for
future reference.

29



Theorem 3.18. The spherical function d)g\n) on the Siegel upper half-space H,, for the weight-x action

7 = (SN Pz (o= (4 B) esnm.zem),

of the symplectic matrices g € Sp,,(R) on the functions f: H,, — C, corresponding to
)\:/\1€1+...+Aj€j+...+An€nEC[V
at Z = ko iexp(2R) with ko € K¢y and

R = (rj € Rsg, 1 <j <),

is given by

det(h(k))*® du(k), (3.24)

() _ > oew det(a) exp(ioA(o(r, k)))
wen = | (el )

keK

where h(k) = A + iB is the Hermitian matriz obtained from the decomposition of k € K into real
orthogonal kg € Ky and Hermitian orthogonal

k= <_AB ’i) (AA' + BB' = 1,, AB' = BA', A=4', B=-B)

as k = ko kn, and o(r, k) is the diagonal matriz o(r, k) = (P(g’k) 7P?T k)) with

01(r, k) 0
P(rk) = (0j(r, k) eR, 1 <j<n)
0 on(r, k)

related to r = (}8" 7OR) via the matrix equality kexp(r)%t = uexp(p)u’ with k € K and u € U. The
functions T and § are given by

W= I n(ge) I a5 I a(*5%)

1<j<n 1<j<k<n 1<j<k<n

— _ 05 + Ok 9j — Ok

s0)= T[ shte I sh(Z2) I1 sh( &),
1<j<n 1<j<k<n 1<j<k<n

while ¢, is a positive real constant depending only on n.

The Siegel-MaaB Laplacian A®*) is invariant under the weight- action [B22)) of the symplectic group.
This is due to the fact that the Casimir operator w € Ugg descends under this action to the A(%). The
only part in our computation of the heat kernel where the action of the group Gy on functions on Go/ Ky
played a role was in the computation of the spherical function in Eubsection 3.3] which was done by
integrating over the action of the complex orthogonal group K on the spherical function for the complex
group G. Therefore, to construct the heat kernel for the Laplacian A®*) on H, (n € N>1), we only need
to adapt the formula for the spherical function by suitably altering the action of the group K on the
spherical function ®, for the complex group G, which was done in [Theorem 3.18 by multiplying the
integrand in [equation (3.15)| in [Theorem 3.15 with a weight-factor det(h(k))~2%, where h(k) = A + iB
is the Hermitian matrix obtained from the decomposition of & € K into real orthogonal ky € Ky and
Hermitian orthogonal

kp, = (AB i) (AA' + BB' = 1,, AB' = BA', A=4', B=-B")

as k = ko kp,. To obtain a more explicit bound for the heat kernel on H,, corresponding to A®), we need

a bound for this factor det(h(k)) in terms of the diagonal matrices ¢ and r, which is what we undertake
next.

30



Lemma 3.19. Let A be a (nxn)-Hermitian matriz. Let eigenvalues of A be labeled according to increasing
size:

Amin(A) = A (A) < ... < An(A) = Anax(A)

Let r be an integer with 1 < r < n, and let A, denote any (r x r)-principal submatriz of A obtained by
deleting n — r rows and the corresponding n —r columns from A. For each integer k such that 1 < k <,
we have

Me(A) < Ak(Ar) < Apgn—r(A)

Proof. See [31] p. 189, Theorem 4.3.15] O

Theorem 3.20. Let k € K be a complex symplectic orthogonal matriz and h(k) = A+iB be the Hermitian
matriz obtained from the decomposition of k into real orthogonal ky € Ko and Hermitian orthogonal

ky = <_AB 'j) (AA' + BB' =1, AB' = BA', A=4', B= -B)

as k = ko ky,. Let R be the diagonal matriz

T1 0
R= (rj €R>0, 1 <j<n)
0 Tn
and r = (63 _OR). Let uexp(o)ut = k:exp(r)Et be the eigendecomposition of the Hermitian matric
kexp(r)Et with w € U unitary symplectic and o(r, k) the diagonal matriz o(r, k) = (P(S’k) _P?T k)) with
01(r, k) 0
P(r k) = (0i(r,k) eR, 1 <j<n).
0 on(r k)
Then det(h(k)) is bounded above by
ex " os
det(h(k)) < PELZJ,1 |QJ|).
[T ch(r;)
j=1
Proof. Let | be the (2n x 2n)-matrix
1—-4 (1, -—il,
I=— (]ln i ) . (3.25)

It is easy to check that [ is a symplectic unitary matrix, whose inverse is given by
l*l_zt_l—’—i ]]-n ]]-n
) il, —il,/)’
Also let the symplectic real orthogonal kg and Hermitian orthogonal k; be of the forms
_( 4 Bo (A B
o= (28 ) wa he (4 ),

respectively. Then multiplying the matrix kexp(r)Et = ko kp, exp(r) ky, k from the left by [ and from the
right by [~!, and writing the product as

I(kexp(r)E )™t = (Lko 1) (1 kn 1) (1 exp(r) ™) (L kn Y1 KL 1Y),
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in the block decomposed form, we have

Tt - i i i 6—iB§
Urexp(r)E = (A5 00 ) (AFB ) (S ) (aim o y(sbmh 0y,

Since kg € Kj is real orthogonal, we know that the matrix w := Ay + By is unitary. By the hypothesis of
1

the theorem, h = A+iB is Hermitian. In that case, infequation (3.23), we noted that A—iB =h = h™".
With these notations, the above matrix equation becomes

—to,_1 [ whch(R)hw'  whsh(R)h™tw!
Wk exp(r)k )I™" = (mhtsh(R)hwt wh~! ch(R)h~tw' )"

Note, that the determinant of the (1, 1)-block of the above matrix is det(h)? det(ch(R)).

Now coming to the other side of the matrix equation uexp(o)u’ = kzexp(r)%t, as [ is symplectic
unitary, the matrix s = [u is also unitary. Writing s in the block decomposed form

(4 B
*=\-B A}
we write the matrix [(uexp(o)u)l~! = sexp(0)3" as

. [ A B\ [exp(P) 0 A B
(3 D w2 2)

_ Aexp(P)Zt +B exp(—P)Et —Aexp(P)B! + Bexp(—P)A?
—Fexp(P)Zt + ZeXp(—P)Et Bexp(P)B! + Aexp(—P)At

Comparing the determinant of the (1,1)-block of this matrix with that of [(k exp(r)Et)l 1 we have

).

Let us denote by m the (2n x 2n)-Hermitian matrix sexp(g)s’, and by M its (n x n)-principal submatrix

t

det(h)? det(ch(R)) = det(A eXp(P)Zt + Bexp(—P)B

M = Aexp(P)Zt +B exp(fP)Et.

Now, m being a (2n x 2n)-Hermitian matrix with eigenvalues exp(491),...,exp(+o,) and M being the
(n x n)-principal submatrix of m, by [Lemma 3.19] we have

Ak(m) € Ae(M) < Angi(m) (1 <k <n),
which implies

Ar(m) - Ap(m) < det(M) < Apy1(m) -+ Aap(m).

The n largest eigenvalues of m are exp(|o1]),.-.,exp(|on|), and The n smallest eigenvalues of m are
exp(—|o1|),-..,exp(—|on|). Therefore, we have

M(A) - Aa(A) = exp (=D lojl) and Ausa(A4)-dan(4) = exp (D losl),
j=1 j=1
from where it follows that
exp (=3 logl) < det() < exp (D losl)
j=1 j=1

thereby proving the requisite determinant-inequality. [l

This of course provides a very useful upper bound on the heat kernel corresponding to the Siegel-Maafl
Laplacian A, which we state as the next theorem.
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Theorem 3.21. Let Kt(ﬁ) denote the heat kernel at a point Z = koiexp(2R) € H,, corresponding to the
Siegel-Maaf Laplacian A" of weight k on the Siegel upper half-space with ko € Ko and

T1 0
R = (TjERzo,lgjgn).

0 Tn

Then, subject to the above conjecture, Kt(n) is bounded above by

. exp (=Y, j3t/4) / e(o(r, k) exp (=27 (05(r, k) /t — Ko (r, k)]))

()
K" (2R) < ¢, - EAA du(k),
2R < P 5alr, k) 111y () (k)

keK

where o(r, k) is the diagonal matriz o(r, k) = (P(g’k) _P?T k)) with

o1(r, k) 0
P(Tvk): (Qj(?‘,k?)ER,lSan)
0 on(r, k)

related to r = (}8" 7OR) via the matrix equality kexp(r)%t = uexp(o)u’ with k € K and u € U. The
functions € and 0 are given by

H 0j H (0 + oK) H (05 — ok),

1<j<n 1<j<k<n 1<j<k<n
_ ‘ 0j + Ok 0j — Ok

d(o) = H sh(o,) H sh(i2 ) H sh(i2 ),
1<j<n 1<j<k<n 1<j<k<n

while c,, is a positive real constant depending only on n.

Proof. Follows immediately from Theorems 318 317 and O

4 Sup-norm bounds on average

Let Kt('i) (R(Z,W))(Z,W € H,,) denote the heat kernel on H,,, where R(Z, W) is the matrix

Tl(Z,W) 0
R(Z,W) = (rj(Z,W) €R,1 < j <n),
0 rn(Z, W)

with the entries 7;(Z, W) (1 < j < n) of R(Z, W) related to the eigenvalues p;(Z, W) (1 < j < n) of the

cross-ratio matrix (see subsection 2.7))
p(ZW)=(Z-WNZ -W) N Z-W)(Z-W)"' (Z,WcH,)

by the relation

<j<n).

exp(2r;(Z,W)) = L+ — Y 7 pilZ (1

1— (Z, W)

Then the heat kernel Kt(k"’F) on I"'\H,, is given by the I'-periodization

(fi 1") W CW + D "
W i ol t =T K QR(Z. ~W)).
ver ‘ < W-—-2 ) ¢ <CW +D t ( ( 5 7Y ))
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We write K\""(2) := K"")(Z,Z) and RV(Z) := R(Z,7Z) with entries

<
=2
—
N
~
o

R (Z) = (r](Z) eR,1 < j <mn).
0 r1(Z)

Since A(®) is symmetric, it extends to an essentially self-adjoint linear operator acting on a dense
subspace of H7(T"). Therefore the heat kernel Kt(n’r)(Z, W) has a spectral decomposition

K(HF)ZW Zexp =Ait)ex; (2)py, (W)

+> ep exp(=({pp, pp) + (A, \)t) Ep(Z, pp +i)X) Ep(W, pp +4A) dX (4.1)

PEC \lay

converging absolutely and uniformly on compacta for ¢ > 0. The discrete part of the spectrum given by
the first sum runs over the eigenvalues \; of the Siegel-Maafl Laplacian A" with eigenfunctions P -
The continuous part of the spectrum given by the second sum runs over the set C of inequivalent chains of
rational boundary components of M with ¢p denoting a positive constant depending on the cusp P € C,
ap the Lie algebra of the diagonal component Ap of P, pp the half-sum of positive roots with multiplicity
in ap and Ep the Eisenstein series attached to the cusp P. Setting Z = W in equation ([Il), we obtain

KD (2) = exp(-t) lox, (2P + Y er | exp(—((op, pp) + (N D) [Ep(Z, pp +iN)[? dX
=1

PEC  \Cay

Now, let £ > n + 1 and multiply both sides of the above equation by exp((nx/4)((n+1) — k)t). Then

nkKk

(1) = 1) (oropr) — (A N) <0

Also, since \; > (nk/4)((n + 1) — k) by [Theorem 2.26] we have

%((nﬁ-l)—ﬁ)—)\jﬁo.

Therefore, on taking limit ¢ — co on both sides of the above equation, on the right-hand side only
the ¢y,’s corresponding to A\; = (nx/4)((n + 1) — ) survive. By [Theorem 2.26] these are of the form
¢, (Z) = det(Y)"/2f;(Z). Therefore, we have
nK d
. K, K
Jim exp (= == (k — (n+ D)) K0(2) = 3 (det V)5 F(Z) (k> (n+1)), (4.2)

— 00
j=1

where d = dim(S}(T")) and {f;}1<j<a is an orthonormal basis of S7(I') with respect to the Petersson
inner product. We denote

Zdet HEZ)P (2 €Hy).

Thus, we have

SE(Z) = Jim exp (— %(m — (n+1))t) KD (2). (4.3)

—00

Since the function exp(—nk(k — (n+ 1)) t/4)Kt(K’F)(Z) is monotonically decreasing for any ¢ > 0, we also
have

SH(Z) < exp (= (k= (n+ 1)) K7 (2).
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Further, as

N\ K/2 > K/2
Z —~Z CZ+ D
det = det | ———— =1
‘ (vZZ) ‘ (CZ+D) |
this also implies that for any ¢t > 0 and Z € H,,, we have
SP(Z) <exp (- %(ﬁ —(n+1)t) Y K" (2R (2)). (4.4)

veT

4.1 Sup-norm bounds in the cocompact setting

Note that, to make the calculations less cumbersome, we continue clubbing all positive real constants
depending only on n under the generic symbol ¢,.

Lemma 4.1. Let G denote the complex symplectic group Sp,,(C), K C G denote the complex orthogonal
group K = {k € G | kk* = 13,} and X = G/U denote the symmetric space X = {x = gg' | g € G}.

Then the invariant volume form du(x) on X in the coordinates x = k:exp(r)%t (x € X), where r is given

by the diagonal matrix r = (g 7012) with

R = (r; €R, 1<j<n),

is given by
dpu() = e [6(20)] )\ dry A du(k),
j=1

where du(k) denotes the Haar measure on K, §(r) denotes the function

o= I ey T1 a(252) 1 (25)

1<j<n 1<j<k<n 1<j<k<n

on R and ¢, is a constant depending only on n.

Proof. The tangent space of X = G/U at identity is given by the space p of real dimension n(2n + 1).
Therefore, to calculate the invariant volume form du(z) at x € X = G/U, we first calculate the invariant
matrix differential form 2~ da € p¥. Then, for a choice of dual basis e1,...,¢ej,...,€2n+1) Of Y, We
have

e dr = wi(z)er + ... +wj(z)e; + ...+ Wn(2n+1) (T)en(2n+1)

where each w;j(z) (1 < j < n(2n+ 1)) is a real 1-form. The volume form du(z), denoted by [z~ dz] is
then obtained by taking the wedge product

[x71 dz] =wi(z) A wj(x) -+ wn(2n+1)(:c).
From z = kexp(r)%t (x € X), one obtains
eV de =Fe "k dke'E + R drk + kdE
_ EefT/Q (efT/Q(kt dk)eT/Q + eT/Q(dT)efT/Q + er/2(dEtE)e—r/2)eT/2Et-
Then taking volume form, denoted by the parentheses [ - ], on both sides, we have

dp(x) = [z  da] = [e7/2(kt dk)e™/? + /2 (dr)e™"/? + eT/Q(dEtE)efr/Q]. (4.5)
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Now, as the invariant differential form k¢ dk has the structure of the elements of the complex orthogonal
Lie algebra £, we take

kt dk = (AB ﬁ) (A,B c (Cnxn’ A= —At, B = Bt)

Then the form dk'k = K dk is given by

—t —t — —
—t— A -B —-A -B

Then writing the right-hand side of in block decomposed form, we have
e~ R2 0 A B\ [efi/? 0
dp(z) = 0 eR/2 B A 0 e-R/2
L0 —A =B\ (e 0 ) (drR 0
0 e®2)]\ B -4 0 ef/2 0 —dR

[ ( e~ R/2ZAoR/2 _ oR/2[o—R/2  o—R/2B,—R/2 _ eR/2§63/2> (dR 0 )

_eR/I2BeR/2 4 o—R/2Fe—R/2  (R/2 pg—R/2 _ o—R/2 L R/2 0 —dR

Now, writing the matrices A and B as
A= (Oéj,k = éjyk + injvk)lgj,kgn (Ozjyj =0, ag; = —a; (1 <j<k< n)),
B=(Bik=wik TiTjk)1c;pen  (Bri =Bk 1 <j <k <n)),

where & x, 1)k, W)k, T4k are real 1-forms, one obtains

(e RPAR? — RIZAe™RIZ) | =en T2 (g5 iy i) — T2 (&5 — imyr)

=_ QSh(rj ;Tk)fj,k +2iCh(rj ;Tk)njﬁk (1<j<k<n)

and similarly

_ - ri—7r . ri—r _
(eR/QAe R/2 _ ¢ R/QAeR/Q)jJC:QSh( J 5 k)§j1k+21(‘,h( J 5 k)njyk (1<j<k<n),

(e~ F/2Be=R/2 — eR/QEeR/Q)j p=2 sh(wTrk)wj,k +2i ch(wTTk)T» (1 <j<k<n),

kLS SRS

(N/2Bet? — e B 2) | = ash (T o+ oien(T )y (1< <k <),

Now taking wedge product of the above entries, it easily follows that

du(z) = co [6@20)] Ndry N (Grrnin) Wik ATin),

j=1 1<j<k<n 1<j<k<n
whence, identifying
du(k) = /\ (&l A k) /\ (W A Tjk)
1<j<k<n 1<j<k<n

we have the result stated in the lemma. O

Lemma 4.2. Let G denote the complex symplectic group Sp,,(C), U C G denote the symplectic unitary
group U = {u € G | utt* = 1g,} and X = G/U denote the symmetric space X = {x = gg' | g € G}.
Then the invariant volume form du(z) on X in the coordinates v = uexp(o)u’ (x € X), where o is given
by the diagonal matriz o = (lg 70P) with

P: (QJERaISjSTL)a
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s given by
du(x) /\ 05 AN dp(u

where du(u) denotes the Haar measure on U, 6(9) denotes the function
_ ‘ 0 + Ok 9j — Ok
o= T1 e T (252) T a(252)
1<j<n 1<j<k<n 1<j<k<n

on P and ¢, is a constant depending only on n.

Proof. Proceeding as in the proof of [Lemma 4.1l from = = uexp(g)u’, one obtains
Ve = ve™%ut due®@’ + udou’ + uda’
= ue~?/? (eiQ/Q(ﬂt du)e?/? 4 €2/ (dp)e=?/? + 69/2(dﬂtu>679/2)69/2ﬂt.
Then taking volume form, denoted by the parentheses [ - |, on both sides, we have
dp(z) = [z~ da] = [e7¢2 (@ du)e?? + /% (dp)e™?/? + €22 (dTtu)e /). (4.6)

Now, as the invariant differential form %! du has the structure of the elements of the unitary symplectic
Lie algebra u, we take

_ A B nxn it
Utdu: (E Z) (A,BGC x 7A :7A7B:Bt>.

Also, from Ty = 15, it follows that that du‘u = —u du. Then writing the right-hand side of
in block decomposed form, we have

e—P/2 0 A B ebr? 0

du(r) = 0 P\ B 2 0 P2
(€20 A B (e 0 ) (dP 0
0 ePr2|\-B 4 0 ef/2 0 —dpP

e—P/2AeP/2 _ ¢P/2 Ao=P/2  ¢=P/2Be—P/2 _ oP/2 BeP/2 dp 0
T\ eP/2BeP/2 4 ¢=P/2Be—P/2  ¢P/24e—P/2 _ ¢~P/24P/2 0 —dP

Now, writing the matrices A and B as
A= (aj7k)1§j1k§n (Re(aj}j) =0, arj = —a5k F(1<j<k< n))
B=(Bjk)icjpen  (Bri =Bk (1<j<k<n),

where «; 1, 85, are complex 1-forms, one obtains

(e~ F/2AcP/2 — eP/2A€—P/2)] = 2Sh(Tgk) g (1<j<k<n),
(eP/QZe*P/Q _ e’P/QZeP/Q)M QSh( > Qk) Tk (1<j<k<n),
(e~ F/2Be /2 — eP/2BeP/2)] = (QJ + Qk) Bin (1<j<k<n),
(eP/2BeP/? + e_P/QFff_Pm)j,k — 25h(#) Bix (1<j<k<n).

Now taking wedge product of the above entries, it easily follows that
du(x) = ¢, 6(0) /\ do; /\ (v A k) /\ (Bjk /\Bj,k)a
j= 1<j<k<n 1<j<k<n
whence, identifying
dpu) = N\ (e Ade) N\ Bk ABi)
1<j<k<n 1<j<k<n

we have the result stated in the lemma. O
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Theorem 4.3. For any arithmetic subgroup T' C Sp,,(R) such that M := T\H,, is compact, we have

sup SE(Z) <ecpr gMD/2 (k >n+1),
ZeH,,

where ¢, 1 s a positive real constant depending only on n and I.

Proof. For Z, W € H,,, let R(Z,W) denote the matrix
T1 (Z, W) 0
R(Z,W) = . (rj(Z,W) eR,1<j<n),
0 ro(Z, W)

with the entries 7;(Z, W) (1 < j < n) of R(Z, W) related to the eigenvalues p;(Z, W) (1 < j <n) of the
cross-ratio matrix

p(ZW)=(Z-WNZ -W)" N Z-W)(Z-W)"' (Z,WcH,)
by the relation

exp(2r;(Z,W)) = H— Vri(Z, W) (1

<j<n).
17 pJ(Z,W)

Let R(Z) denote the matrix R(Z,il,) with corresponding diagonal entries r;(Z) (1 < j < n) and for

v €T, let R7(Z) denote the matrix R(Z,vZ) with corresponding diagonal entries 7}(Z) (1 < j < n).

Now, since M = I'\H,, is compact, there are only finitely many elements v € T", namely, the torsion
elements of I', for which the point 7Z can get arbitrarily close to Z. Then, denoting the set of torsion
elements of " by I'r, there is a positive real constant ¢, r, such that RY(Z) > ¢, r 1, for all y € T\ T'p
and Z € H,,. Therefore, given n positive real numbers r; (1 < j < n), we have

#{yel |[r](Z2)<r;; 1<j<n}<cyrvol,({Z € H, |7;(Z) <r; 1 <j <n}),

for some positive real positive constant ¢, r depending only on n and I'. The dependence on I' here is
given by the maximal order of the torsion elements of T'.

As the volume form on H,, in polar coordinates is given by

dyin (ko exp(2R)i) = |6(2r)] /\ dr; A dp(ko)

with R = diag(ry, ro,..., ™), 1 = (102 703) and kg € Ko = Sp,,(R) N O(2n,R), we have

dvol,({Z e H, | rj(Z) <7r;,1<j<n})= 2T|/\de

Therefore, as the heat kernel Kt(”) (2R) is non-negative, continuous, and monotonically decreasing in each
r; (1 <j <n), we have

ZK(“)(RV ) < énr / / K“) 2R)|4( 2r|/\d7“]

yer =0
Hence, from jequation (4.4)| and [Theorem 3.21] we have
S;E(Z) <cpr In(’ivt)ﬂ (47)

where the function I,,(k,t) is given by the integral

exp ((—nk(k— (n+1)) — Z] LiHt/4)

tn2+n/2

I, (k,t) :=

oo oo

colr R exp (= iy (eir /= rlos ) oo A
/ / / d(o(r, k) TTj—; ch”™(r;) |5(2r)|]i\1 dr; /\ dp(k)

r1=0 rn=0 keK
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Now, using Lemmas 1] and 2] we switch the above integral from over r, k (k € K) coordinates on
X =G/U to g, u(u € U) coordinates on X. As we have

5(2r)] /\ dr; Adpu(k) = ¢, 5(0)? /\ doj A dpu(u),

with this change of variables, the above integral becomes

exp (( —nk(k—(m+1)) — 2?21 jQ)t/4)

tn2+n/2

/ / / e ji iclh'g(g?/)tH|gj|))5(@)/j\ld9j N\ dis(u)

01=—00 on=—00 uelU

exp (( —nk(k—(n+1)) — z;;l jQ)t/4)

tn2+n/2

In(“ﬂ t) = Cn

:Cn

n

/ / e(0)0(0) exp ( Z g] [t — Klo])) /\nga

01=—00  Ep=—00 J=1

where J, (g, k) is the integral given by

._ dp(u)
Jn(Qa "i) T / H;}:1 ChK(T‘j).

uelU

Now, as 1/ ch(r;) < 2exp(—r;) (1 <j <n) and kK > n+ 1 we have

Jn(g,n)gcn/exp(nirj)du( )<cn/exp( (n+1) ir])du (u).

uelU J=1 uelU

Then, as r; € R>o (1 < j < n), from [Lemma 3.4] we have

n

do(exp(r)) > exp(—p(r)) = exp(—nr1 — (n — )rg — ... — 1) > exp ( —(n+1) er),
j=1
where ¢q is the real spherical function on H,, corresponding to A = 0 € aV. Then, we have

Tn(0.K) < en / do(exp(r) du(u) = e Bo(exp(0)),

uelU

where ®g(exp(p)) is the complex spherical function on X = G/U corresponding to A = 0. Now, from
[Proposition 3.14] we have

Jn(0,k) < cp

Putting J, (0, k) back in I,(k,t), we have

exp ((—nw(s — (n+1)) = X0, j2)t/4)

tn2+n/2

/ / exp (=37 (93/t = lejl)) /i\ doj,

v(o)

I.(k,t) <cp

01=—00 On=—00

where v(p) is the function given by

o= 11 o) T a(23%) T a(25%)

1<j<n 1<j<k<n 1<j<k<n
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Now, since the integrand in the above integral is an even function of each g; (1 < j < n), we can integrate
each p; in the limit p; € [0, 00], thereby giving

exp (( —nk(k—(n+1)) — 2?21 jQ)t/4)

I.(k,t) <cp tn2+n/2
Pexp (=207 (03/t—res)) o
/ / v(o) Aldgj
0n=0 I=
Now, as 1/v(0) < ¢ exp(—no1—(n—1)o2—...—0,) and nr(k—(n+1))+377_, j2=(k—n)*+.. +(k—1)%
we have
[ [ @ exp (= X5 o/ Vi (s = (n =+ 1)VI/2)°) ¢
Likt)<en [ ... . =73 N\ doj
91[0 gn[O b / j=1
[ [ @ exp (= 0 (0)/VE— (k= (n = + DVE/2)?) 7
<ecp / / TEEYD i\ldgj;

in the sequel we denote the latter integral by H,(k,t). Then setting & = 0;/vt — (k — (n — j +1))v/t/2,
we have

0j = &ViE+ (k= (n—j+1))t/2,

whence one obtains
n n
N\ doj =2 ]\ dg;.
j=1 j=1

The quantity £(0)? now becomes

I II @-em)? J[ (e+om)?

1<<n 1<l<m<n 1<l<m<n
. 2 2
e (5]_+ (H—(n—;ﬂ))\/i) I ((élfm)+l_2m\/i) y
1<5<n 1<i<m<n
l+m 2
X H ((€l+€m)+( (H—T‘f‘l))\/_) )
1<l<m<n

which is a polynomial in ¢ = (&1,...,&,), & and t. Then, putting £(p)? back in ??, we have

-/ /exp > I <<a+gm>+(n<nl+7m+1>)¢z)2x

§1=—00 En=—00 1<i<m<n
— 2 1— 2 n
1<j<n 1<l<m<n i

After evaluating integrals of the form

]oé’"exp(s%d&”(_”mr(m“) (m € Nso),

2 2

E=—o00

H, (k,t) becomes a polynomial in k and t. As k >n+1> 0 and ¢t > 0, for an upper bound, we need
only consider the highest powers of k and ¢ in H,,(k,t). From the above formula, it follows that

Hn(li,ﬁ) <cp Hn(nJrl) tn(n+1)/2u(\/£)’

40



where (1 is a polynomial of order n(n — 1). Thus, from equations ([@7)) and (?7?), one obtains
ST(Z) € eap MO N2 (2 €H,).

Now multiplying both sides of the above inequality by exp(—«t) and integrating over ¢ € [0, 0o], we have

o0 o0

r Sy(Z) n(n+1) n(n+1)/2 gt
exp(—kt)S,. (Z)dt = - <ceprk exp(—kt)t p(Vt)dt < cpr pCESy Yo
t=0 t=0
whence it easily follows that
SH(Z) < epp k"HV/2 (7 € H,)
thereby proving the result stated in the theorem. O

4.2 Sup-norm bounds in the cofinite setting

Theorem 4.4. For any arithmetic subgroup I' C Sp,,(R) such that M = T'\H,, is of finite volume, we
have

1
j=1 ch™(r}(2))

(r2n+1),

sup SL(Z) < ¢, k™D /QZ T

ZeH, ~eT

where r](Z) denotes the diagonal entries of the diagonal matriz RV(Z) = R(Z,vZ) and c,, is a positive
real constant depending only on n and T.

Proof. From |equation (4.3), we have

SE(Z) = Jim exp (— %(m —(n+ 1)) Y K2R (2)) (4.8)

—oo
verl

and from [Theorem 3.21] we have

In(k,t, R(Z))

(“) Y
CREDS I, arty @)

where I, (k,t, R7(Z)) is the integral given by

exp (= Y7, 7%t/4) / e(o)exp (= X5 (¢F/t —kleil))

Y —
In(’ivta R (Z)) =Cn tn2+n/2 5(9)

du(k).

keK

Here o0 = o(r7(Z), k) is the diagonal matrix o(r7(2), k) = (P(Méz)’k) _P(TS(Z) k)) with

01(r'(Z), k) 0
P(r(Z),k) = (0;(r"(Z),k) eR, 1 <j <mn)
0 on(r7(Z), k)

related to

via the matrix equality
kexp(r? (Z2)k =uexplo)at (k€ K, ueU). (4.9)

Since heat kernels decrease rapidly with increasing distance, the integral I, (k,t, RY(Z)) also decreases
rapidly with increasing distance and hence we have

Ln(k,t, RV(Z)) < L(k,t,0,). (4.10)
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Then, for RY(Z) = 0,,, the matrix equality (£9) becomes
Kk = wexp(o)u’ (ke K,ueU). (4.11)

For the eigendecomposition (I1) of k%t, we next determine u and exp(p) in terms of k € K. For
this, we use the matrix [ from (323) and calculate

— (A B\ _,_i(A+iB 0
@ (4, B (A 0, i

where the matrix h := A + iB is Hermitian, as KR is Hermitian; note that A —iB = h~%. Since h is
Hermitian, we have

h = vDgt,

where v € Uy, and D is a real diagonal (n x n)-matrix. Substituting this into (Z.12)) yields

— (v 0\(D 0 o0
# =5 ) (6 o) (6 0)

In this way, the factors on the right-hand side of (£I1]) become

w=1" <8 g) and exp(g)<]3 Do_l). (4.13)

Note that the eigendecomposition (LIT]) is unique only up to the ordering of the eigenvalues exp(+p;)
(1 <j < mn),ie., we can always choose u € U in such a way so that 9; € R>o (1 < j < n). Therefore,
without loss of generality, for the rest of the calculation, we assume g; € R>¢ (1 < j < n).

Next, we determine the invariant volume form du(k) in terms of ¢ and v by proceeding as in the proof
of Cemma 4.1} From z = k& = uexp(o)u’, one obtains

de=dk & +kdE =du exp(0)u’ + uexp(o) do u' + uexp(p) du'.
Now as 2~ ! = (kk')~! = kk! = uexp(—o)a, we have
e ldzr =& (k' dk + dEtE) T — e 92 (e 9/2(@" du)e?/? + e 9/2(do)e?? + e?/2(du'u)e/2) /27"

Noting that du'u = —u’ du, we take the volume form on both sides, denoted by the square brackets [ -],
to obtain

[kt dk + (REdk) | = [e~¢/2(@ du)e?’? + e~¢/2(dp)e?’? — e@/?(@t du)e—/?).

From the structure of u obtained in [@I3)), it is easy to see that the invariant matrix differential form
u! du is of the form
=t
—+, _ (vdv 0
W du= < 0 ot dﬁ) '

Now, writing e ~¢/2(a@* du)e?/? + e=9/2(dp)e?/? — e9/?(@* du)e¢/? in the familiar block decomposed form,
we have

- —P/2 0 —td 0 P/2 0
‘ ot | (e v do e
K b+ dm[( . em)( ‘ Uth)( o

(P20 o'dv 0 P20\ (AP0
0 e P2 0 ofdv 0 P2 0 —dpP

The right-hand side of the above equation gives

dP + e P/2(wt dv)el/? — P12 (Tt dv)eP/? 0
0 —dP + P2 (vt dv)e=P/? — e~ F/2 (vt dv)el/?
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Now, taking v* dv = (w;k)1<j.k<n, We have

(AP 4 e P/2(@t dv)e?’/? — P2 (Tt dv)e™/?); 4 = 6,4 doj + 2Sh(g] - Qk) Wi k-
Therefore, we have
—t
k' dk+(RdR) | =co [ sh?(Z2 /\ doj N\ (win ATj).
1<j<k<n 1<j<k<n
Since k' dk € € is of the form
A B
t _ nxn _ nt 7t
kdk<_B A> (A, BeC"" B=DB"A=-A"),
we have
Im(A) Im(B) .
t t _ t
ktdk + (kT dk) = (_Im(B) T A) ) = 2 Tm(k" d)
Then,identifying du(v) = [0 dv] = Ai<jcr<n(Wjr A W) k), we have
du(k) =[] sh? (4% /\ doj A\ dp(v) \dp(ke) (ko € Ko).

1<j<k<n

This allows us to write

RIS S Sy EUEE > MLy

tni+n/2 (o)

X H shQ(Ql;gm)/\dgj.

1<l<m<n j=1

Therefore, we have

H exp (— (j/Vt— (k= (n—j+1))V1/2)?)

exp (— %(’i = (n+ 1)) t)In(r,t,0,) =cn / / tn®+n/2 )
01— 0n,=0
mex exp(o1) sh( (e
X dQ
jE[l S 1§l]<:r[n§" sh((er + om /\ ]

Now setting & = 0;/vt — (k — (n — j + 1))v/t/2, we have
0; = EVE+ (8 — (n—j +1)t/2, (4.14)

whence one obtains

/\ doj =" \ dg;.
j=1 j=1
Now see that

tlimo th 7t1~>oo H Qj H (% + ng) H (% B QTm)

1<j<n 1<l<m<n 1<i<m<n

- 11 fi—(n2—j+1) I1 (m_(n—H_Terl)) 11 Z_Tm

1<j<n 1<i<m<n 1<l<m<n

Also, as t — 0o, by the substitution [@I4), we have g; — 0o (1 < j < n). Therefore, taking the limit at
t — oo, we obtain

exp(oj) _ . exp(e))

im = lim = 2.
t—00 Sh(@j) 0j—00 Sh(@j)
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Next, as
o — om = (& — &Eu)VE+ (1 — m)t
and for [ < m we have [ — m < 0, the quantity exp(go; — om) — 0 as t — oo. Therefore, we have

exp(or) sh((or — om)/2) exp(a1) (exp (o1 — om)/2) —exp (— (o1 — 0m)/2))

lim = lim
tooe sh((o+om)/2) t=ooexp (01 + 0m)/2) —exp (= (o + om)/2)
= lim explor = om) = 1 =-1 (1<l<m<n).

t=co 1 —exp(—(01 + om))

Combining all the above limits, we have

, nK
tlggo exp (— I(H —(n+1))t)I(k,t,0p)

k—Mnm—j5+1 l+m m—1
—o [T = I (- en) T M

1<5<n 1<l<m<n 1<l<m<n
<ecp Hn(n+1)/2.
Then, from |equation (4.8)[and equation (4.10)| the statement of the theorem easily follows. O

Theorem 4.5. For any arithmetic subgroup T' C Sp,,(R) such that M := T'\H,, is of finite volume, we
have

sup S,E(Z) <ecpr A (nt1)/4 (k >n+1),
ZeH,,

where ¢, 1 s a positive real constant depending only on n and I.

Proof. By [Theorem 2.13) we know that the boundary M*\ M of M consists of finite union of subspaces
M; = (I n P(P;))\IP;, where P; runs through a set of representatives of equivalence classes modulo T
of rational boundary components of H,, and its subspaces of strictly smaller degree. We denote by C
the set of all such inequivalent chains of boundary components of M. Then, for P € C, we can define
boundary neighbourhoods U.(P) containing the entire chain P, such that the complement of their union
in M, i.e.,

K.:=M\ | U(P)
PeC

is a compact subset of M. We shall now estimate SL(Z) for Z ranging through K. and U.(P) (P € C),
respectively.

In case of the compact set K., using [Theorem 4.3, we have already determined that

sup SL(Z) < ¢, ps™MHD/2 (k>n+1),
ZeK.

where the constant ¢, r > 0 depends only on n and I'..

Next, in case of U(P) (P € C), by [Remark 2.74] without loss of generality, we can assume P to be
the chain

Fo\HO < Fl\Hl <...< Fj\Hj < ... < anl\anl

of standard boundary components of T',,\H,,.

Let %, denote the standard fundamental domain of the Siegel modular group I',,. For Z € %,,
there exists a constant cz(n) > 0 depending only on n, such that Y > c3(n)1,, (see kubsection 2.2)). Let
Aj(Y) (1 <j <n) denote the ordered set of eigenvalues

of the positive definite matrix Y. Then U.(P) can be taken as the neighbourhood

Se={Z=X+iY e %, | \Y)>¢e}
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of the standard boundary components of .%,. As \,(Y) denotes the highest eigenvalue of Y, the com-
plement of S in %, is then given by the compact subset

K.={Z=X+iY € Z, | cs(n)l, <Y <el,}.

Let f € S¥(T) be a cusp form of weight k. For Z € H,, such that Y is Minkowski reduced and
Y > cl,, for some ¢ > 0, there exist positive numbers c¢;(n,c¢) > 0 and cz(n,c¢) > 0 depending only on n
and ¢, such that

[F(2)] < er(n, ¢) exp(=ca(n, ¢) tr(Y)).

(see |26 page 57]). Since here we consider Z € .%,, we can take ¢ = c3(n). In that case, the positive
numbers ¢ (n,c¢) > 0 and cz2(n, ¢) > 0 depend only on n and we have

|F(Z2)] < c1(n) exp(—ca(n) tr(Y)) (Z € ). (4.15)

This shows that the function f(Z)/ exp(icz(n) tr(Z)) is a bounded holomorphic function on S, and hence,
by maximum modulus principle, its absolute value

2 f
exp (ica(n) tr(Z))

takes its maximum value at the boundary

= exp(2ca(n) tr(Y))|£(2)|?

0S. ={Z=X+iY € Z, | \(Y) =¢}
of S.. Now, write det(Y)"|f(Z)|? as

det(Y)"

At (Y IF(D)° = exp(2es(m) eI (D) g s

Then writing the eigenvalues of Y as A;(Y) (1 < j <n), we have

det(Y)" B ﬁ M (V)R
exp(2c2(n) tr(Y)) L exp(2e2(n)A; (V)

The functions A% /exp(2ca(n)A;) attain maxima at \; = k/(2c2(n)) and decreases monotonically for
Aj > Kk/(2¢2(n)). Therefore, if we choose € > k/(2¢2(n)), then we have

sup SL(Z) = sup SY(Z) < ¢pp w"(HD/2 (H >n+1,e>
ZeM ZeK.

)

Now, in case € < k/(2c2(n)), we need to determine sup,¢,, Sk (Z) in the annulus

SE\SK/(262(n)) = {Z =X+1iY e,

e< (YY) < QC:(n)}
Y < 202“(”) ]ln}.

g{Z:XJriYe%,

We do this using Theorems .3 and 4.4

From [equation (4.8), we have
. nKk K
5x(2) = lim exp (— == (5 — (n +1))t) ZFK,E '2R"(2)).
04S]

We split the sum over I' according as whether there is a minimum distance between the point vZ and
Z or they can get arbitrarily close. Let I'o denote the set of elements of I' for which vZ and Z can get
arbitrarily close. Then we split the above sum as

SE(Z) = Jim exp (= (e —(n+1)1) Y K (R(2))
YEMT

+ lim exp (— %(ﬁ ~(n+1))t) Y K" @eR(2)).

YE
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As the function exp (— % (k — (n +1))t) > eI, Kt("‘v)(QR’Y(Z)) is monotonically decreasing in t, we
have

SH(Z) Sexp (= Tr—(+1)1) Y K ER(2)).

yEM\To

+ lim exp (— %(nf (n+1)t) Y K" @R(2)).

t—o00
YEl

(4.16)

As for v € T'\ ' the points vZ and Z cannot be arbitrarily close, the first sum can be handled exactly
as in [Theorem 4.3 using the counting function to estimate the sum by an integral to give

exp (— an(m —(n+1))t) Z K" QR(2)) < e "MH/2, (4.17)
vyEM T

The second sum was estimated in [Theorem 4.4l to be

. nKk (k) n(n+1)/2 1
1 — —(k — 1)) K" (2R" < . 4.1
fpew (= Fe=(r 1)) 3, KE@EE) ™D 3 gy

Thus, it only remains to estimate the sum

2 1ch“< 7)) (4.19)

7€l

Since I', is defined as the set of elements of I' for which vZ and Z can get arbitrarily close, by

Remark 2.72] we have
n—1
T = | J I,
j=0

where I'_ := '\ W;. Thus, by (23], these groups are explicitly given by

{5 1) }SESymn(m},
ve={ (0 2 [a= (2 ") s=(0 B)) asiswow,

where L, H € Z("=9)*7 and S5 € Sym,,_;(Z).

Next, we need an effective way of calculating the quantity 1/ [[;_, ch™(r}(Z)). Here we derive a more

general formula for the quantity I/HJ:1 ch?(ry(Z,W)) (Z,W € H,), Where setting W = vZ (v € T'w),
we can easily obtain the sum in (£I9) above.

Recall from [subsection 2.1 the cross ratio
oW, 2) = (W — 2)(F — 2) (T - Z)W - Z)" (2, € H,).

Let p;j(Z,W) (1 < j < n) denote the eigenvalues of p(W,Z). The point Z = X +iY € H,, where
X, Y € R"*"™ with Y > 0 can be written as

1, X\ (Y2 0 .
Z= (0 h) ( 0 y1/2> Vil

Now, as the matrices p(Z, W) and p(gZ, gW) have the same set of eigenvalues for all g € Sp,, (R), setting

y-12 0 1, —-X _ _
V:( 0 Y1/2> (0 Jln) W =Y V(W - X)y~V2 (4.20)

the cross ratio p(V,il,) has the same eigenvalues as p(Z, W), i.e., p;(Z,W) (1 < j < n). Therefore, we
have

det(L, — p(Z,W)) = det (1, — (V —iln)(V +il,) " (V 4+ il,)(V — il,) 7).
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Since these eigenvalues are of the form
pj(ZaW): th2(rj(Z’W)) (1§j§n),
from the above equations, using the fact (V —il,)(V +il,)~! = (V +il,)~*(V —il,), one obtains
1 _det (V +i1,)(V —ily,) — (V —il,)(V +il,))
1}, ch’(r;(2,W)) det(V +il,) det(V —il,)
_ det(2i(V —V))
 det(V +il,) det(V —il,)’
Then, using the definition of V' in one obtains

1 _ 4" det(Im(2)) det (Im(W))
[Tj—, cb®(r;(Z, W) | det(W — Z)|? '

(4.21)

Next we estimate the sum in (1) by breaking the sum over I, into sums over I'/_ (0 < j < (n—1)).
We begin with I'Y_. For v € T | i.e.,

= (5 1) Eesm@)

we have vZ = Z + S. Therefore, putting W = Z + S injequation (4.21)] we obtain

1 _ 4" det(Y)? B 1
1}, ch®(r)(Z))  det(S —2iY)det(S +2iY)  det(L, + (3¥~1/25Y~1/2)2)’

Then we estimate the sum over 'Y, by the matrix beta integral

1 / [dS]
D & < (4.22)
vg) [1;—; ch®(r](2)) . det(1, + (3Y~1/28Y ~1/2)2)r/2
o0 €Sym,, (R)

Now, setting 7' = 1V ~Y/25Y /2 we have
[AT] = ¢, det(Y)~(+1/2[q].

This gives us

Z 3 < e det(Y) (D)2 / I
. 1 ch r1(Z)) det(1,, +T2)x/2
€T TeSym,, (R)

Then, using Hua’s matrix beta integral (see [22, page 33])

dT n(n+1 Oé—n/2 2(1— 7’L+l//2
R e L L
TeSym,, (R) =

and det(Y) < (k/(2¢c2(n)))™, from the above calculations, it easily follows that

- < e /A, (4.24)
2 NRGEy

Next we consider the sum

yers,
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ForyeTl (1<j<(n—1)),ie.,

02 (=0 al)s-( %)

where L, H € Z("=9)*J and Sy € Z=)x(n=3) G, = SL we have vZ = A(Z + S)A*. Therefore, putting
W = A(Z + S)At in we obtain

1 _ 4" det(Y)?
[T, ch?(r](2)) |det(A(Z + S)A* - Z)|?
47 det(Y)?

" | det ((A(X + S)A* — X) + i(AV At + V) [

Now, just as in the j = 0 case above, we estimate the sum over I'}_ by a matrix integral I,, .(Z), i.e.,

where the integral I, »(Z) is given by
/// 2" det(Y)"® [dS2] A [dH] A [dL]
|det ((A(X + S)A! — X) +i(AY At +Y))|™

Next consider the the block decomposition

P ())((1 ))((-’ig) (X1 € RI¥, X, € R-DX0=3) | X7, € RO-9)%5),
12 2

of the matrix X € R"*™. Then, we have

. B 0 Ht —I—XlLt
AX +9A" - X = (H+LX1 Sy + (LH + HLY) + (LX) + X1oLt + LX,LY) )

Now, since

[d(Se + (LH' + HL") + (LX L, + X12L' + LX L) A [d(H + LX1)] A [dL]
= [dS2] A [dH] A [dL],

we can simply replace the term A(X + S)A' — X in I, .(Z) with S, to write

///2"*“'(31(1 A;ESj]Y)[+z}9)|f£dL]'

L H S»

Next we write the positive definite matrix ¥ > 0 in the Cholesky decomposed form Y = BB?, where

b= (1;@1 Jg) (P, € R, P e RVD*x(n=0) | p ¢ R(—9)%4)
2

with P;, P» non-singular lower triangular. Then we have

_ [dS2] A [dH] A [dL]
Z) = L/!S/ |det (1/2(1, + (B~*AB)(B~1AB)t +iB*1$B*t))|’”“ (4.25)

The matrices B~'AB and B~'SB~*, in block decomposed form, are given by
1, 0
B 'AB=|__}’ ,
<P2 'rp 11n_j>

Lgpt _ 0 P H'P!
T \PHPTY PSPyt — Py Y(HPTPY+ PPUTHY) P )
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respectively. We set

oL = P, 'LPy, (4.26)
9H = Py *HP Y, (4.27)
23\;:P{152P§t*Pzil(HPftPtﬁLPPlet)P{t (4.28)

Then the matrix 1/2(1,, + (B~'AB)(B~'AB)! + iB~'SB~!) in the denominator of the integrand in
quation (125) is given by

1 1; Lt + il
—(1,+ (B7'AB)Y(B 'AB)}+iB7'SBH =~ 7 ~ I
g (L + ) )yt J=\ivim 1, 420D 15

and the corresponding determinant is given by
det (%(h +(B™'AB)(B™'AB)" + z‘B—lsB—t))
= det((1,_; + LL' + HH') +i(S, — HL' — LH")).
Next we set
Q=1,_;+LL'+ HH',
T =9~ HL' — LH".

Then the integral I}, (Z) in fequation (4.25)is given by
/// [dS2] A A [dL]
| det( Q + ZT)|"”" '

Next we need to calculate the volume form [dS5]) A [dH] A[dL] in terms of T, L and H. From equations

#26) and ([£27)), we obtain

det (Pl )nij
dot (D))
1
det(P1 )" J det(Pg)

2L = [dL],

21(n=9[qH] =

[dH].

From lequation (4.28)] one obtains

[dS2] A [dH] A [dL]
det(Pp)n—i+1

2(n=D(n=3+D/2q 8] A [dH] A [dL] =

Now, since [dS5] A [dH] A [dL] = [dT] A [dH] A [dL], we conclude that
[dSo] A [AH] A [dL] = 200D (=3+1)/242i(n=3) qet(Py)" I+ det(Py) % [dT] A [dH] A [dL).
Therefore, we have

A [dL)
T/ | det( Q + zT)| ’

1] (Z) < cn det(Py)" 71! det(P QJ// (4.29)

H

=

where ¢, as usual, stands for a generic constant depending only on n. As the matrix Q@ = 1,,—; + LLt+

/ [dT]
[det(Q + iT)|"

TeSym,, _;(R)

HH! is positive definite, the integral
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can be written as

[dT] 1 [dT)
/ [ det(Q +4T)["  det(Q)" / | det(L,—j +iQ~1/2TQ~1/2)|s"

Tesym, _;(R) T€Sym,, _;(R)
Then setting T = QY2TQ1/2, we have
[dT] = det(Q)™—7+1/2[aT).
Then, using the Hua integral in (£23)), we obtain

/ [dT) B 1 / [dT]
[det(Q + D" det(@) It qey(L, + 722
TeSym,, _;(R) T

jo—(n=3)(n—j+1)/4

<cn det(Q)F =2 (4.30)
Also, from Y < (k/2¢a(n))1,, ie.,
P 0 Pt pt PP} P P! K
_ t_ (41 1 _ (A 1
Y =B85 = (P Pg) (0 P2t> o (PP{5 PQPt“FPPt) = 2ca(n) Ln,
one obtains that
PyP! + PP' — PP}(P,P})"'PP' = PP} < QL()]ln_j. (4.31)
C2(n

Thus we have det(Pz) < ¢,x("~7)/2. Hence, by [equation (4.29)and [equation (4.30)} we have the estimate

I (Z) <ep i~ (D=4 D/4 (n=i)(n=i+1)/2 i (n—j)

// dH] A [dL]
det(1,,— ]+LLt+HHt)f< (n—j+1)/2

Now, to estimate the the integral

// dH] A [dZ]
det(1,_; + LLt + HHt)s—(m—j+1)/2
we set

1, j+LL'=EE!, E'H=U.

Then, the above integral splits as

// dH] A [dZ]
det(1,,— J+LLt+HHt)H (n—j+1)/2

_ / [dL] / [dU]
- det(1,_; + LLt)r—(n=i)=1/2 det(1,_; + UU)r=(n—j+1)/2"
LeR(n—i)xj UeR(n—i)xj

Proceeding as in [22, Theorem 2.2.1], for matrices X € RP*9 (p,q € N>1) one obtains the formula

dx ) (1—1)/2—p/2
/dt@[ﬁ ‘"”H l_/l)/;;” (> (p+q-1)/2).

XeRpxa

Using this formula, it immediately follows that

[dU] e

< J(n—34)/2
/ det(1,,_; + UUt)—(n—j+1)/2 = Cnk )
UeR(n—3)%x3j

/ [dZ] < o pi=0)/2,
~ det(L,_; + LLt)s—(n=0)-1/2 —
LeR(n—3)%x3j

50



Thus, we have the estimate for the integral

/ / [AH] A [dL] )
det(1L,_; + LLt + HH!)s=(n=j+1)/2 ~

thereby giving

I

n,K

(Z) <ey k(n=i)(n—j+1)/4
Hence, we have that

(=i (n—j+1)/4 0<j<(n-1))

2 lch“ 2 =

yeri,

and consequently,

K <ep Kn(n+1)/4.
2 IT5- 1Ch i (2))

7€l

Thus, from jequation (4.18)l we have

lim exp ( — %(n —(n+ 1))t) Z K(”)(QR'Y( Z)) < en K n(n+1)/4,

t—o00
Y€l

whence the theorem follows. O

4.3 Uniform sup-norm bounds

Theorem 4.6. Let 'y C Sp,(R) be a fized arithmetic subgroup of Sp,,(R) such that My := To\H, is of
finite volume. Let I' C 'y a subgroup of finite index. Then, for k > n + 1, we have

sup S,I_;(Z) < ¢,y g t1)/4 (k >n+1),
ZeH,

where ¢y, 1, 45 a positive real constant depending only on n and I'y.
Proof. As in the proof of [Theorem 4.5] we denote by Cq the set of all inequivalent chains of boundary

components of My and choose boundary neighbourhoods U.(Py) (Py € Cp) containing the entire chain
Py such that the complement of their union in My, i.e.,

Ko = Mo\ U U=(Po)
PyeCo

is a compact subset of Mj.

Let M :=T\H,, and 7: M — My denote the covering map. Then by means of Ky ., we obtain the
compact subset K. := 7~ 1(Ky.) of M. Since I C I'y, from [equation (4.4)] by expanding the sum over T
to that over the larger group I'y, we have

S,E(Z)Sexp(—%(ﬁ— (n+1)) ZK“) 2RY(Z))

vel
Sexp(—%(ﬁ— (n+1)) ZK“)2R7 ),
v€lo
which, by [Theorem 4.3, gives the uniform bound
sup SL(Z) < enr, k"2 (k> n41). (4.32)

ZeK.
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We are thus left to bound the quantity SL(Z) in the neighbourhoods of M obtained by pulling back
the neighbourhoods U.(Py) (Py € Co) of My to M. In order to do this, as in the proof of [Theorem 4.5
we can again assume without loss of generality that Py is the chain

Fo\HO < Fl\Hl <...< Fj\Hj < ... < anl\anl

of standard boundary components of I';,\H,,. Furthermore, we may also assume that the chain P € C of
boundary components of M lying over Py is also the chain of standard boundary components of T';,\H,,
of ramification index ¢, say. Then a cusp form f € S?(I') of weight  has a Fourier expansion (see

equation (2.12))

o
F(2) = Y aT)exp (% tr(TZ)>
TeSym,, (Q), T>0
T half-integral

at P. Then, just like in |equation (4.15)| in [Theorem 4.5, we obtain positive numbers c¢;(n) > 0 and
c2(n) > 0 depending only on n such that

[f(Z)] < c1(n) exp(—ca(n) tr(Y)/€)  (Z € Fy).

Then proceeding as in [Theorem 4.5 with c2(n) replaced by ca(n)/¢, one sees that for € > k€/(2ca(n)), we
have

4
sup SE(Z) = sup SL(2) (6 > H—),

ZeM ZeK. 2¢a(n)

which, by gives the uniform estimate

sup SL(Z) < ¢,p, k7 HD/2 (k >n+1).
ZeM

Thus, we are left only to bound SL(Z) in the range Y < (1k€/2c2(n))1,. Again, as in [equation (4.16)
in [Theorem 4.5 we split the sum

SH(Z) = lim exp (= T (n = (n+ 1)) Y K7 (2R7(2))

—00
vel

in jequation (4.8)|into sums over I' \ T’ and ', with I'e :=T' N T o, to obtain
nkKk K
SH(Z) <exp (= (e (1)) Y K ER(2)).

yEM\ T

. ns R (4.33)
+ Jlim exp (=S (s = (n+1))t) D KV R(2)).
V€T o
Now as I'\ T'ss € I'g \ T'0,00, expanding the first sum to Iy \ I'g,cc and using we obtain
nK . ",
exp (= (k= (n+1)t) D KPQR(Z)) < enry £,

YEMTeo

Thus, it only remains to estimate the sum

2 IT5- 10h”( ;(2))

~vETl

in lequation (4.18)l Note that here we now have

n—1
= U s,
=0
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with T, =T'N ri

Ooo’ €.,

0o 1, ¢S
re, = { ( 0 1, S € Sym,(Z) ¢,
< A AS 1; 0 0 (H!
J B - ; _
(8 ) o ) s (5 ) osseon
where L, H € Z("=9)*J and S, € Sym,,_;(Z).
Then, for j = 0, proceeding as in we have

[dS]
Z =1 Chm( 1(2)) = / det(1,, + (%Y—1/235y—1/2)2)m/2'

vers SeSym,, (R)
Now, setting 7' = 1Y ~%/24SY~1/2, we have
[AT] = ¢, 0" HD/2 det(Y)~(+D/2[q6],

thereby giving

< cng—n(n+1)/2 det(Y)("+1)/2 / S t( [dT]
€

2. IT;- 1ch“ 7(2)) L, +T2)%/2

velg, TeSym,, (R)
Now, from det(Y) < (k€/(2¢c2(n)))", it easily follows that we have an uniform estimate

n(n+1)/4

E:HJNM(M»S%K

~yeTl'%

independent of the ramification index £.
Similarly, for the j > 0 case, proceeding as in [Theorem 4.5l in place of substitution equations (E26)—
HE2Z2R), we set
2L = Py ULP,
2H = Py YHP,
25, = P; WS, Pyt — Py Y(CHP PPt + PP YHY) Pyt

which results in

' ' )/2-2j(n—j : : dr)]
I (7)< ¢, 0~ =3+ D(n=0)/2=2i(n=]) qet(P,)"~9+1 det(P: zj/// Al
1.2)<e et(Py) eUP)” | MaQﬂﬂ|
L

in place of [@Z9). Now, with det(Py) < ¢, (¢x)("~9)/2 coming from Y < (kf/2¢2(n))1,, vialequation (4.31)]
it follows that

> T ) I (Z) < 0790 =)=+ 1/ < ¢ n=)(n—j+1)/4,

vers,

Thus, combined, we get an uniform estimate

¢, (14
Zlle%<»§

vel'

resulting in the uniform estimate

: _ ﬁ _ (k) Y 3n(n+1)/4
tligloexp( 4(/{ (n+1)) GZFK Q2RY(Z)) <cnk
gl

in the second sum in jequation (4.33)| thereby proving the theorem. O
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