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Results of stochastic models in public media are often misunderstood, not least because the 

uncertainties of stochastic modelling are not sufficiently considered in classical mathematics 

teaching. This paper first presents a learning environment that confronts students with different forms 

of mathematical uncertainty: the Decision Theatre Lab. In it, students mathematically explore a 

professional epidemic model and use its stochastic results for political decision-making. We then 

present an experimental study that we conducted using this format to investigate how specific model 

knowledge influences the interpretation of simulation results. The results show that students with 

specific model knowledge are significantly better at accurately interpreting the stochastic variations 

in the simulation results than students who had to interpret the results without prior knowledge of the 

underlying model. The latter, on the other hand, rely more often on contextual knowledge to interpret 

the model results. 
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Introduction: Mathematics education in the era of vague news 

Public media regularly report on the results of scientific modelling, in particular stochastic modelling 

of climate change. Statements such as “Climate change made US and Mexico heatwave 35 times 

more likely” (Brosnan, 2024) are prone to misinterpretation, driven by a lack of statistical knowledge 

and misconceptions about mathematical models. The fact that the underlying models are often 

inaccessible to readers does help at all. 

Gal and Geiger (2022) have provided a detailed taxonomy of the Statistical and Mathematical 

Products (StaMPs) appearing in public media in the context of the COVID-19 pandemic. They 

conclude that the interpretation of these STaMPs requires not only an academic understanding of 

probability but also a literate handling of more subtle and unquantifiable forms of uncertainty that 

arise, for example, in the case of inadequate data or when making modelling assumptions. They 

diagnose the need for learning environments that consider these forms of uncertainty. 

Against this background, we will first introduce the Decision Theatre Lab: a science communication 

format that enables students to use a scientific epidemic model to make political decisions in a 

fictitious but reality-based setting. We describe the structure of a Decision Theatre Lab, analyse which 

forms of uncertainty are inherent in the occurring StaMPs and which aspects of mathematical literacy 

are important for their interpretation. We then present a case study that used the Decision Theatre 

Lab framework to investigate how specific knowledge of the model influences students’ 

interpretation of its stochastic results. 



 

 

   

 

Exposing students to uncertainty – a Decision Theatre Lab on infection control 

A Decision Theatre Lab – literally and practically – consists of two components: a Decision Theatre 

and a School Lab. A Decision Theatre is an IT-supported science communication format in which 

participants can simulate joint decision-making on various socially relevant topics, guided by the 

interaction with a scientific model and its simulation results. Decision Theatres have been developed 

on a variety of topics, from forest planning (Boukherroub et al., 2018) to mobility transition (Wolf et 

al., 2023) – or infection control (Wiebe et al., 2024), which students attended at Zuse Institute Berlin 

as seen in Figure 1 and which provides the framework for the study presented here. 

In this Decision Theatre, participants take on the role of politicians who have to decide on non-

pharmaceutical infection control measures at the beginning of a fictitious epidemic. They can draw 

on the results of GERDA, a GEoReferenced Demographic Agent-based model for the spreading of 

COVID-19 (Goldenbogen et al., 2022). GERDA simulates the location, the infection probability and 

the health status of about 12,000 residents of a small town and provides SIRD trajectories for different 

scenarios. Due to the stochastic modelling, the simulations can differ significantly from each other, 

even with the same initial conditions. Therefore, the model simulates each scenario almost 100 times 

and displays the results as a set of curves for the number of susceptible, infected, recovered and 

deceased. The results should be interpreted as probability distributions that show different degrees of 

statistical dispersion depending on the scenario. The simulation results depicted in Figure 2, for 

example, show that dispersion increases the later a potentially imposed lockdown comes into force. 

This indicates that the prediction accuracy of the model decreases with a later lockdown. Phenomena 

like these typically emerge in stochastic models (Goldenbogen et al., 2022). 

Figure 1: Students in a Decision Theatre Figure 2: GERDA results for different start times 

(above graphs in h) of a lockdown 

To support their political decision-making, students can simulate three scenarios with different 

political measures. In the further course of the Decision Theatre, they also reflect on the role of the 

model for the discussion and evaluate the informative value of the simulation results. 

It is important to note that although the participants in a Decision Theatre interact with a mathematical 

model, this model itself remains a black box for the most part. To put the format in the context of 

mathematics education, we have therefore developed an optional School Lab that teaches students 

the mathematical background and the internal structure of GERDA, with a particular focus on the 

implemented probabilistic concepts: The students derive the probability function for the transmission 



 

 

   

 

of the virus and use it to calculate transmission probabilities in various scenarios. They also use school 

knowledge of conditional probabilities to determine the probabilities of change in the health status of 

different people. These calculations, however, are all done once and with pen and paper. It is only 

after the School Lab in the Decision Theatre that students are confronted with the phenomenon of 

multimodal distributions resulting from repeated simulations. 

The role of model knowledge in the interpretation of stochastic simulation results 

The students' use of GERDA exemplify that the interpretation of Statistical and Mathematical 

Products (StaMPs) produced by stochastic models is characterised by two types of uncertainty: 

- First, uncertainty arises from stochastic modelling itself, particularly from the probability 

functions and distributions; we refer to this simply as probability. Probability is quantifiable, 

and its occurrence in the model is intended. It is a basic concept of statistical education, and 

dealing with it is included in any description of statistical literacy, for example in the 

influential one by Gal (2002). The correct description and interpretation of GERDAs results, 

for example, requires basic ideas about the dispersion of probability distributions. 

- Secondly, uncertainty is inherent in any form of mathematical modelling. It arises from the 

fact that models are abstractions, characterised by simplifications and based on certain 

assumptions. Model uncertainty is a collective term for the reasons that lead to unintended 

differences between the model and reality and is often difficult to quantify (Thompson & 

Smith, 2019). An awareness of model uncertainty is therefore an implicit prerequisite for a 

comprehensive modelling competence, which also includes the evaluation of the validity and 

scope of given modes, as described by (Niss & Højgaard, 2019), for example. Research 

conducted during earlier iterations of the Decision Theatre Lab has shown that students tend 

to explain deviations between model forecasts and actual developments with contextual 

knowledge rather than with model uncertainty, indicating a low level of awareness of model 

uncertainty (Lieben, 2023).  

Now, one can assume that students depend on appropriate statistical content knowledge and 

sufficiently developed model competence to accurately interpret such StaMPs – in addition to some 

general mathematical competencies such as understanding graphs and a positive mathematical 

identity, as Heyd-Metzuyanim et al. (2021) note. However, the observation of some unsuccessful 

StaMP interpretations in Decision Theatres without the prior School Lab led us to assume that this 

framework, as shown in Figure 3, can be extended to include another construct, namely, the specific 

model knowledge that is acquired in the School Lab. 

But since a subject’s prerequisites for interpreting (COVID-19-related) StaMPs in the media are 

usually formulated in terms of statistical literacy and modelling skills – as in Gal & Geiger (2022) or 

Heyd-Metzuyanim et al. (2021), the influence of specific model knowledge on the interpretation of 

the model results has so far been underexposed. We, therefore, used the Decision Theatre Lab on 

infection control to conduct a case study approaching the question: How does specific knowledge of 

a model influence the interpretation of its results? 

 

https://link.springer.com/article/10.1007/s10649-021-10075-8#auth-Einat-Heyd_Metzuyanim-Aff1
https://link.springer.com/article/10.1007/s10649-021-10075-8#auth-Einat-Heyd_Metzuyanim-Aff1


 

 

   

 

 

 

 

 

 

 

 

 

 

Figure 3: Conceptual framework of a StaMP interpretation in the context of a Decision Theatre Lab 

 

Studying the influence of model knowledge – research design and implementation 

To determine the influence of the specific model knowledge acquired in the School Lab on the 

interpretation of the StaMPs in the Decision Theatre, we conducted an experimental study with the 

School Lab as an intervention. We defined two groups of students: The experimental group, who first 

visited the School Lab and then the Decision Theatre, and the control group, who first visited the 

Decision Theatre and only after that visited the School Lab.  

To collect data on how the students processed the stochastic model results in the Decision Theatre, 

we used the participant observer method according to Weischer and Gehrau (2017) while the students 

were working on a collaborative group task. For this task, each group received the results shown in 

Figure 2 from simulation runs with different start times of a lockdown and was asked to interpret the 

data by completing the sentence “The later the start time of the lockdown, the...”. We recorded the 

group's communication with microphones and analysed the audio transcripts using quantitative and 

qualitative methods for comparing the experimental group and control group. 

Between June 2023 and April 2024, a total of 𝑁 = 89 students from the 10th grade onwards 

participated in the study. The students were between 14 and 20 years old, and the average grade was 

2,31. Of the students, 70 first attended the School Lab and then the Decision Theatre and were thus 

assigned to the experimental group. The control group, which first attended the Decision Theatre and 

then the School Lab, comprised 19 students. We randomly assigned working groups. A total of 24 

groups were analysed, with 19 assigned to the experimental group and five to the control group.  

The data was analysed using a mixed-methods approach, which enables both explorative and 

comprehensive as well as multi-layered perspectives on the research complex (Kelle, 2019). The 

material for the analysis consisted of transcripts of the audio recordings and observation protocols. 

We processed this data according to Mayring's content analysis (Mayring, 2019). 

First, we categorised the material inductively, with a particular focus on statements that allowed 

conclusions to be drawn about the students' statistical concept knowledge and awareness of model 
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uncertainty. To code the data, we used MAXQDA (VERBI Software, 2023). The obtained codes were 

quantitatively evaluated to carry out a correlation analysis. We calculated the mean values in each 

category for the experimental and the control group and tested for significance using Student's t-test. 

In the next step, we evaluated the transcripts qualitatively using the categories specified in Table 1.  

Table 1: Coding manual for the audio-transcribed student interactions 

 
Code Definition Example 
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dispersion 

Statements that verbalise the 

dispersion of the graphs 

"The more people get infected, 

the greater the dispersion." 

Correct interpretation 

as probability 

distribution 

Statements in which the 

dispersion of the curves is 

interpreted as a probability 

distribution 

“The later the lockdown, the 

more difficult it is to predict 

precisely.” 

Deterministic 

Misconception 

Statements that provide 

incorrect non-stochastic 

interpretations of the results 

“The later the lockdown starts, 

the more infections there will 

be.” 
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Contextual 

Knowledge 

Statements based on 

contextual knowledge that is 

related to the model results 

“If no one is sick anymore due 

to the lockdown, then no one 

can get infected. So, the earlier 

the lockdown starts, the 

better.” 

 

Results 

The quantitative analysis revealed two significant correlations for the inductively selected categories. 

In the domain of statistical concept knowledge, 50% of the students in the experimental group 

correctly described or interpreted the model results. This number was only 20% in the control group. 

In the domain of awareness of model uncertainty, the number of context references per minute and 

person was significantly lower in the intervention group (0.13) than in the control group (0.24). 

We then proceeded with a qualitative analysis of the answers. We closely examined how the tasks 

were solved, what led to correct understanding, and what characterised the misconceptions. To 

illustrate this analysis, we present two exemplary cases below, which show both a typical path to 

correct interpretation and a widespread misconception in detail. 



 

 

   

 

The following example from the control group illustrates a common statistical misconception, that is 

then made plausible by contextual knowledge. 

Olivia: The later the lockdown starts, the faster the infection rate increases, perhaps?  
[…] 
Olivia:  Because here it has a higher increase…  
[…] 
John:  Yes, but why? Because it's winter?  

At the beginning of the conversation, Olivia constructs a deterministic relationship between the start 

time of the lockdown and the number of infected people. John then tries to explain the model 

behaviour with real-world contextual knowledge by asking: "But why, because it is winter?". This 

statement illustrates a cognitive escape from the actual mathematical task. The real-world reference 

not only serves the students to validate the graphs, but the students also consider it necessary to 

interpret the model results. 

In contrast, the example from the experimental group shows a typical dynamic within a conversation 

in which the students move from the same type of misconception to a correct interpretation. 

James:  The later the time of the lockdown, the greater the number of infected persons. 

Emily:  The higher the peak of infected people.  

[…]  

James:  The more infected there are.  

[…] 

Emily:  But look. It's also getting thicker. So, the individual lines here no longer agree about 

what's happening.  

[…] 

William:  Yes, that's just a probability.  

[…] 

William: So, the later, um, a lock-. The later-.  

Emily: The more difficult it is to predict what will happen.  

James initially postulates a causal relationship between the lockdown's start time and the number of 

infected persons. Emily expands on this assumption by referring to the peak of the infection curve. 

However, both statements are incorrect as they imply a deterministic relationship and disregard the 

stochastic nature of the underlying model.  

A correction process begins as Emily notices that "the lines are becoming thicker," indicating the 

dispersion of the curves. This observation marks the start of questioning the deterministic 

understanding and leads to a reconsideration of the previously assumed cause-and-effect relationship. 

As the discussion progresses, the participants become more aware of the probabilistic nature of the 

model. This awareness is reflected in the statement "that's just a probability," which explicitly 

acknowledges the connection between the dispersion of the curves and the induced probability 

distribution. The introduction of the term “probability” then enables the group to move on from the 

mere description of the dispersion to its correct interpretation. They discern that stochastic models do 

not provide fixed predictions but rather depict a range of possible scenarios with different 

probabilities. 



 

 

   

 

Discussion: How could model knowledge affect StaMP interpretation? 

The fact that the students in the control group interpreted the StaMPs presented in the Decision 

Theatre more precisely overall could be related to the fact that model knowledge to some extent 

interferes with both the domain of statistical literacy and that of mathematical modelling competence. 

On the one hand, the use of stochastic concepts and terms for reproducing the model components in 

the School Lab seems to motivate some students in the experimental group to use the same concepts 

and terms to interpret the dispersed graphs in the Decision Theatre – which in this case leads them to 

correct conclusions. Knowledge of the model thus leads to a better understanding of the model results, 

since the concepts used to describe the model reappear in the interpretation of its results. On the other 

hand, as students in the School Lab reproduce the structure of the model, they have to follow some 

of the underlying modelling assumptions. This may contribute to an increased awareness of model 

uncertainty. The alternation between reality and the mathematical model during the reconstruction 

process – which is typical for stochastic modelling (Kelter et al., 2023) – could help students to 

distinguish more precisely between these two worlds. Thus, they are significantly less tempted to use 

extra-mathematical contextual knowledge from reality to explain mathematical results. 

It is not clearly assessable, however, whether the model knowledge has really improved the 

interpretation of the simulation results in a direct way or whether the teaching of this knowledge in 

the School Lab has rather led to a promotion of statistical literacy and development of modelling 

competence, which in turn has led to an improved interpretation. But in any case, knowledge of the 

structure, assumptions and use of a professional model offers students at least a glimpse of an 

unfamiliar, professional “mode” of mathematical modelling (Frejd, 2014).  

Finally, it should be stated that many modern computer models are obviously mathematically too 

complex to be reconstructed in a School Lab. The promotion of model-independent statistical literacy 

and modelling skills therefore remains indispensable. 
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