MSG-Zirkel 10b

A Arithmetische Folgen höherer Ordnung

(a) \square Begründe, dass die Folge (a_n) mit $a_n = 2n^2 + n + 1$ weder eine arithmetische noch eine geometrische Folge ist. Fülle die Tabelle aus.

n 0 1 2 3 4 5 6 7 a_n $d_n^1 = a_{n+1} - a_n$ $d_n^2 = d_{n+1}^1 - d_n^1$

- (b) Führe die Untersuchung aus (a) auch für die beiden folgenden Folgen durch. Erzeuge dazu, falls nötig, weitere Differenzenfolgen.
 - (1) (b_n) mit $b_n = n^3 n + 1$
 - (2) (c_n) mit $c_n = n^4 8n$

Stelle eine Vermutung über den Zusammenhang zwischen der expliziten Darstellung der Folge und den Differenzenfolgen auf.

(c) Weise deine Vermutung für Folgen (q_n) mit $q_n = a \cdot n^2 + b \cdot n + c$ nach.

MSG-Zirkel 10b

B Arithmetische Folgen höherer Ordnung

(a) \square Gegeben sind die ersten Folgenglieder einer unbekannten Folge (a_n) . Fülle die Tabelle mit den Differenzen und den Differenzen der Differenzen aus.

n	0	1	2	3	4	5	6	7
a_n	1	4	11	22	37	56	79	106
$d_n^1 = a_{n+1} - a_n$								
$d_n^2 = d_{n+1}^1 - d_n^1$								

- (b) \blacksquare Stelle die Folgenglieder von (a_n) als Summe der Differenzen erster und zweiter Ordnung dar. Finde ein Muster und gib eine allgemeine explizite Darstellung für a_n an.
- (c) Für eine Folge (q_n) sei d_1 die erste Differenz erster Ordnung und d_2 die konstante Differenz zweiter Ordnung. Gib die explizite Darstellung der Folge mithilfe von d_1 und d_2 an und bringe sie in die Form $q_n = a \cdot n^2 + b \cdot n + c$, wobei a, b und c durch d_1 und d_2 ausgedrückt werden sollen.