Folgen – Grenzwerte – Reihen

1 $0, \overline{9} \stackrel{?}{=} 1$

Ein Brautpaar diskutiert:

Das Gleichheitszeichen kann nicht zutreffen - egal, wie viele Neunen ich hinschreibe, es bleibt immer ein kleiner Unterschied d zu 1. Bei 10 Neunen gilt $d=1-0.9999999999=0.0000000001=\left(\frac{1}{10}\right)^{10}$ bei 100 Neunen gilt $d = 1 - 0.999...999 = 0.000...001 = (\frac{10}{10})^{100}$ und so weiter.

Nein, das Gleichheitszeichen ist korrekt.

Du behauptest also, dass es auf der Zahlengeraden zwischen 0, 9 und 1 einen positiven Abstand *d* gibt. Dann gib mir einen solchen Abstand vor.

Zum Beispiel $d=\left(\frac{1}{10}\right)^{1000}$. Dann schreibe ich 1001 Neunen hinter den Dezimalpunkt und damit ist der Abstand unterschritten. Bei $d=\left(\frac{1}{10}\right)^{10000}$ schreibe ich eben 10001 Neunen hinter den Dezimalpunkt und damit ist auch dieser Abstand unterschritten.

Egal, welchen noch so kleinen Abstand d du mir vorgibst, ich kann immer ein Teilstück von $0,\overline{9}$ angeben, dessen Abstand zu 1 kleiner ist als d.

Welche Argumentation überzeugt euch mehr?

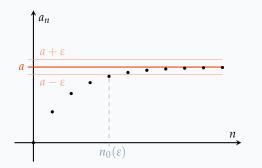
Der Grenzwert einer Folge

Die Zahl $a \in \mathbb{R}$ heißt *Grenzwert* der Folge (a_n) , falls es für jede noch so kleine Zahl $\varepsilon > 0$ einen Index $n_0(\varepsilon)$ gibt, nach dem alle Folgenglieder a_n weniger als ε von a entfernt sind.

Falls die Folge (a_n) den Grenzwert a hat, schreibt man lim $a_n = a$ oder $a_n \stackrel{n \to \infty}{\longrightarrow} a$ und sagt:

- "Der Limes von (a_n) für n gegen unendlich
- "Die Folge (a_n) konvergiert gegen den Grenzwert a."

Falls eine Folge keinen Grenzwert besitzt, divergiert die Folge.



Limes (Lat. "Grenze")

2 Grenzwerte bestimmen und begründen

Es seien die die folgenden Folgen gegeben:

$$(1) a_n = 3 + \frac{4}{n}$$

$$(2) b_n = \sqrt{n}$$

(3)
$$c_n = \frac{n^2 - n^2}{2n^2}$$

(3)
$$c_n = \frac{n^2 - 4}{2n^2}$$
 (4) $d_n = 2 + (-1)^n$

- (a) Untersuche die Folgen auf Konvergenz und vermute gegebenenfalls ihren Grenzwert.
- (b) Weise nun für die konvergenten Folgen rechnerisch nach, dass sie gegen den vermuteten Grenzwert konvergieren. Ermittle dafür zunächst für den konkreten Wert $\varepsilon = 0,01$ und dann für ein beliebiges $\varepsilon > 0$ den Wert $n_0(\varepsilon)$, ab dem die Folgenglieder alle einen kleineren Abstand als ε vom Grenzwert haben.
- (c) Wie lässt sich für die divergenten Folgen beweisen, dass sie divergieren?

3 Wo steckt der Fehler?

Es gilt $\xrightarrow{1} \xrightarrow{10n+1} \xrightarrow{n \to \infty} 0,05$. Denn wählt man d=0,1, ist der Abstand aller Werte von 0,05 kleiner als d.

Es gilt $\lim_{n \to \infty} (-1)^n = 1$.

Denn in jedem noch so schmalen Streifen um 1 liegen unendlich viele Werte.

Nullfolgen

Eine Folge mit dem Grenzwert 0 heißt Nullfolge.

- (a) \square Weise mithilfe der ε -Definition nach, dass die harmonische Folge (a_n) mit $a_n = \frac{1}{n}$ eine Nullfolge ist.
- (b) Beweise mithilfe von (a), dass auch die Folge (b_n) mit $b_n = \frac{n!}{n^n}$ eine Nullfolge ist.

5 Kleine, aber feine Unterschiede

- Die Folge (a_n) sei eine Nullfolge, d. h. es sei $\lim_{n\to\infty} a_n = 0$. Welche der folgenden Beschreibungen sind besonders präzise, welche weisen Ungenauigkeiten auf?
 - (1) Die Folgenglieder a_n kommen mit wachsendem n der 0 immer näher.
 - (2) Die Folgenglieder a_n kommen mit wachsendem n der 0 beliebig nahe.
 - (3) Die Folgenglieder a_n kommen mit wachsendem n der 0 immer näher, ohne sie zu erreichen.
 - (4) Die Folgenglieder a_n streben gegen 0 für n gegen unendlich.

Stellt eine Rangfolge auf und begründet eure Ergebnisse in der Klasse.

Grenzwerte von arithmetischen und geometrischen Folgen

- (a) \square Begründe kurz, dass eine arithmetische Folge (a_n) mit $a_n = a + n \cdot d$ nicht konvergent sein kann.
- (b) Untersuche die geometrischen Folge (a_n) mit $a_n = a \cdot q^n$ für die angegebenen Werte auf Konvergenz. Was passiert bei für q = 1 und q = -1? Formuliere deine Ergebnisse als Satz. Findest du auch eine allgemeine Begründung?

	а	d
(1)	2	$\frac{3}{4}$
(2)	1	-2
(3)	-4	$-\frac{1}{3}$
(4)	0,1	1,05

Grenzwertsätze für Folgen

Die Folgen (a_n) und (b_n) seien konvergent mit $\lim_{n\to\infty} a_n = a$ und $\lim_{n\to\infty} b_n = b$. Dann gelten:

Faktorregel:

$$\lim_{n \to \infty} (\lambda \cdot a_n) = \lambda \cdot \lim_{n \to \infty} (a_n) = \lambda \cdot a \text{ für } \lambda \in \mathbb{R}$$

Produktregel:

$$\lim_{n\to\infty}(\lambda\cdot a_n)=\lambda\cdot\lim_{n\to\infty}(a_n)=\lambda\cdot a \text{ für }\lambda\in\mathbb{R} \quad \lim_{n\to\infty}(a_n\cdot b_n)=\lim_{n\to\infty}(a_n)\cdot\lim_{n\to\infty}(b_n)=a\cdot b$$

Summenregel:

$$\lim_{n\to\infty}(a_n+b_n)=\lim_{n\to\infty}(a_n)+\lim_{n\to\infty}(b_n)=a+b$$

Quotientenregel:

Summerineger: Quotienterneger:
$$\lim_{n\to\infty}(a_n+b_n)=\lim_{n\to\infty}(a_n)+\lim_{n\to\infty}(b_n)=a+b \quad \lim_{n\to\infty}\left(\frac{a_n}{b_n}\right)=\lim_{n\to\infty}(a_n):\lim_{n\to\infty}(b_n)=\frac{a}{b},$$
 falls $b=0$ und $b_n=0$ für alle n .

Grenzwerte mit Grenzwertsätzen

(a) Bestimme mithilfe der Grenzwertsätze die Grenzwerte der wie folgt definierten Folgen:

(1)
$$a_n = \frac{n^2 - 2n + 1}{2n^2 + 1}$$

(2)
$$b_n = \frac{(n+1)^2}{5n^2}$$

$$(3) c_n = \sqrt{n+1} - \sqrt{n}$$

$$\lim_{n\to\infty}\sqrt{n}=\infty$$

(b) Beweise den Grenzwertsatz für Summen. Schreibe dazu zunächst die Voraussetzungen mithilfe der Definition des Grenzwertes präzise auf. Nutze anschließend die sogenannte *Dreiecksungleichung* $|a+b| \le |a| + |b|$ für reelle Zahlen a und b, um zu zeigen, dass der Term $|a_n + b_n - a + b|$ kleiner wird als $2 \cdot \varepsilon > 0$, wenn $\varepsilon > 0$ beliebig klein gewählt wurde. Warum genügt die Abschätzung schon?

Eine Wurzelfolge

Die Folge (a_n) sei durch die Rekursion $a_n = \sqrt{2a_{n-1}}$, $a_0 = 1$ gegeben.

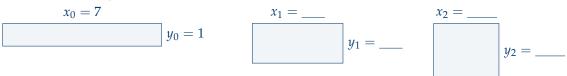
- (a) \square Skizziere einige Werte von (a_n) graphisch und vermute den Grenzwert der Folge.
- (b) Zeige per vollständiger Induktion, dass $a_n = 2^{1-\left(\frac{1}{2}\right)^n}$ eine explizite Darstellung der Folge ist und begründe damit ihren Grenzwert.

9 Das Heron-Verfahren

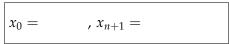
Das Heron-Verfahren ist ein Näherungsverfahren zur Bestimmung der Quadratwurzel einer reellen Zahl a>0. Dabei überführt man ein Rechteck mit den Seitenlängen a und 1 schrittweise in ein flächengleiches Quadrat. Dessen Seitenlänge ist dann \sqrt{a} .

In jedem Schritt wählt man als längere Seite den Mittelwert der beiden vorherigen Seiten und passt die andere Seite so an, dass der Flächeninhalt a erhalten bleibt.

(a) \square Mithilfe des Heron-Verfahrens soll $\sqrt{7}$ approximiert werden. Ergänze die Seitenlängen in der Abbildung.



(b) Berechne $\sqrt{7}=2.645\ldots$ auf drei Nachkommastellen genau. Stelle dann eine allgemeine Rekursionsformel für die Folge (x_n) der Seitenlängen im Heron-Verfahren zur Berechnung von \sqrt{a} auf.



- (c) Beweise, dass die Heron-Folge (x_n) gegen \sqrt{a} konvergiert, also dass $\lim_{n\to\infty} x_n = \sqrt{a}$ gilt.
 - (i) Zeige, dass (x_n) durch \sqrt{a} von unten beschränkt ist, also $x_n \ge \sqrt{a}$ bzw. $x_n^2 a \ge 0$ für alle $n \in \mathbb{N}_0$ gilt.
 - (ii) Weise nach, dass (x_n) monoton fallend ist, also $x_n \le x_{n-1}$ bzw. $x_n x_{n-1} \le 0$ für alle $n \in \mathbb{N}_0$ gilt.
 - (iii) Aus (i) und (ii) folgt nach dem sogenannten *Monotoniekriterium*, dass die Folge (x_n) gegen einen Grenzwert x konvergiert. Beweise nun mithilfe der Grenzwertsätze, dass tatsächlich $x = \sqrt{a}$ ist.